首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is known to possess antiparasitic activity towards Plasmodium species. Parasite proteases are currently considered to be promising targets for antimalarial chemotherapy. In the present study, we have studied the inhibitory effect of NO on the activity of plasmepsin in Plasmodium vivax, the pepsin-like aspartic protease which is believed to be involved in the cleavage during hemoglobin degradation in Plasmodium falciparum. NO donors (+/-) (E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), S-nitrosoglutathione (GSNO), and sodium nitroprusside (SNP) were found to inhibit this plasmepsin activity in a dose-dependent manner in purified P. vivax aspartic protease enzyme extracts. This inhibitory effect may be attributable to the nitrosylation of the cysteine residue at the catalytic site. However, an inhibitor of aspartic protease activity, namely pepstatin, was also found to inhibit (IC50 3 microM ) the enzyme activity, which we have used as a positive control. Our results therefore provide novel insights into the pathophysiological mechanisms, and will be useful for designing strategies for selectively upregulating NO production in P. vivax infections for antimalarial chemotherapy and also biochemical adaptations of the malaria parasite for survival in the host erythrocytes with a better understanding of the protease substrate interactions.  相似文献   

2.
Estradiol (E(2)) is an important risk factor in the development and progression of breast cancer. However, a "direct effect" of E(2) in breast cancerization has not yet been demonstrated. The estrogen receptor complex can mediate the activation of oncogens, proto-oncogens, nuclear proteins and other target genes that can be involved in the transformation of normal to cancerous cells. Breast cancer cells possess all the enzymes (sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD)) necessary for the local bioformation of E(2). In the last years, many studies have shown that treatment of breast cancer patients using anti-aromatase agents has beneficial therapeutic effects. The aromatase activity is very low in most breast cancer cells but was significantly increased in a hormone-dependent breast cancer cell line: the MCF-7aro, using the aromatase cDNA transfection and G-418 (neomycin) selection. In the present study, we explore the effect of E(2) on the aromatase activity of this cell line. The MCF-7aro cell line was a gift from Dr. S. Chen (Beckman Research Institute, Duarte, U.S.A.). For experiments the cells were stripped of endogenous steroids and incubated with physiological concentrations of [(3)H]-testosterone (5 x 10(-9)mol/l) alone or in the presence of E(2) (5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol/l) for 24h at 37 degrees C. The cellular radioactivity uptake was determined in the ethanolic supernatant and the DNA content in the remaining pellet. [(3)H]-E(2), [(3)H]-estrone ([(3)H]-E(1)) and [(3)H]-testosterone were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [(3)H]-testosterone is converted mainly into [(3)H]-E(2) and not to E(1), which suggests very low or absence of oxidative 17beta-HSD (type 2) activity in these experimental conditions. The aromatase activity, corresponding to the conversion of [(3)H]-testosterone to [(3)H]-E(2) after 24h, is relatively high, since the concentration of E(2) was 2.74+/-0.11pmol/mg DNA in the non-treated cells. E(2) inhibits this conversion by 77, 57 and 21%, respectively, at the concentrations of 5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol. In previous studies, it was demonstrated that E(2) exerts a potent anti-sulfatase activity in the MCF-7 and T-47D breast cancer cells. The present data show that E(2) can also block the aromatase activity. The dual inhibition of the aromatase and sulfatase activities, two crucial enzymes for the biosynthesis of E(2) by E(2) itself in breast cancer add interesting and attractive information for the use of estrogen therapeutic treatments.  相似文献   

3.
4.
The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [(3)H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [(3)H]-DHEAS to [(3)H]-androstenedione, [(3)H]-testosterone, [(3)H]-estrone and [(3)H]-17beta-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E(1)S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [(3)H]-estrone to [(3)H]-17beta-estradiol. This is the first demonstration that human platelets are able to import DHEAS and E(1)S using the OATP family and to convert DHEAS to active DHEA, and to transform E(1)S to 17beta-estradiol.  相似文献   

5.
A simple synthesis of beta-acaridial [(E)-1], the active principle of the sex, alarm and aggregation pheromone among astigmatid mites, was achieved in 5 steps from 1,2,4-butanetriol 2 in a 19% overall yield. Its analog, beta-acariolal 8, was also prepared in a 63% yield by oxidation of the intermediate, beta-acaridiol [(E)-7], with pyridinium dichromate (PDC). This synthetic route also gave beta-(Z)-acaridiol [(Z)-7] by using a Z-selective base in the Wittig reaction. (Z)-7 was oxidized to give a new monoterpene, beta-(Z)-acaridial [(Z)-1], which was detected as a trace component in the secretion of Caloglyphus polyphyllae, together with 8.  相似文献   

6.
A wide array of drugs, xenobiotics, and endogenous compounds undergo detoxification by conjugation with glucuronic acid in the liver via the action of UDP-glucuronosyltransferases. The mechanism whereby glucuronides, generated by this enzyme system in the lumen of the endoplasmic reticulum (ER), are exported to the cytosol prior to excretion is unknown. We examined this process in purified rat liver microsomes using a rapid filtration technique and [(3)H]estradiol-17beta-d-glucuronide ([(3)H]E(2)17betaG) as model substrate. Time-dependent uptake of intact [(3)H]E(2)17betaG was observed and shrinkage of ER vesicles by raffinose lowered the steady-state level of [(3)H]E(2)17betaG accumulation. In addition, rapid efflux of [(3)H]E(2)17betaG from rat liver microsomal vesicles suggested that the transport process is bidirectional. Microsomal uptake was saturable with an apparent K(m) and V(max) of 3.29 +/- 0.58 microm and 0.19 +/- 0.02 nmol.min(-1).mg protein(-1), respectively. Transport of [(3)H]E(2)17betaG was inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and probenecid. Specificity of the transport process was investigated by studying the cis-inhibitory effect of anionic metabolites, as well as substrates of the plasma membrane multidrug resistance-associated proteins on the uptake of [(3)H]E(2)17betaG. Collectively, these data are indicative of a novel multifunctional and bidirectional protein carrier for E(2)17betaG and other anionic compounds in the hepatic ER. This intracellular membrane transporter may contribute to the phenomenon of multidrug resistance.  相似文献   

7.
The 2-arylvinyl moiety in 1-(3-chlorophenyl)-3-(4-piperidyl)-5-[(E)-2-(5-chloro-1H-indol-3-yl)vinyl]pyrazole 2, which has previously shown improved DNA gyrase inhibition and target-related antibacterial activity, was transformed to other groups and the in vitro antibacterial activity of the synthesized compounds was evaluated. Many of the 5-[(E)-2-arylvinyl]pyrazoles synthesized in this study exhibited potent antibacterial activity against quinolone-resistant clinical isolates of gram-positive bacteria with minimal inhibitory concentration values equivalent to those against susceptible strains.  相似文献   

8.
Eleven oxazolone derivatives were synthesized and characterized by (1)H NMR, EI, IR and UV spectroscopic and CHN analysis. Three compounds, 4-[(E)-(4-nitrophenyl)methylidene]-2-phenyl-1,3-oxazol-5(4H)-one (11), 4-[(E)-(4-methoxyphenyl)methylidene]-2-methyl-1,3-oxazol-5-one (12) and 4-[(E)-(4-nitrophenyl)methylidene]-2-methyl-1,3-oxazol-5(4H)-one (13) were screened for phagocyte chemiluminescence, neutrophil chemotaxis, T-cell proliferation, cytokine production from mononuclear cells and cytotoxicity. 4-[(E)-(4-Nitrophenyl)methylidene]-2-methyl-1,3-oxazol-5(4H)-one (13) was found to be the most potent immunomodulator in the series.  相似文献   

9.
Effects of prostacyclin and carbacyclins on endothelin-induced DNA synthesis were investigated in vascular smooth muscle cells. DNA synthesis was estimated by [3H]thymidine incorporation. Five carbacyclins used in this report were 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(S)-3-hydroxy-1-octenyl]bicyclo [3.3.0]oct-2-en-3-yl) pentanoic acid (TEI-7165), methyl 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(S)-3-hydroxy-1-octenyl]bicyclo[3.3.0]oct-2-en-3- yl]pentanoate (TEI-9090), 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(3S, 5S)-3-hydroxy-5-methyl-1-nonenyl]bicyclo[3.3.0]oct-2-en-3-yl)penta noic acid (TEI-9063), methyl 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(3S, 5S)-3-hydroxy-5-methyl-1- nonenyl]bicyclo[3.3.0]oct-2-en-3-yl)pentanoate (TEI-1324), 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(S)-4-hydroxy-4-methyl-1- octenyl]bicyclo[3.3.0]oct-2-en-3-yl] pentanoic acid (TEI-3356). Prostacyclin and the carbacyclins inhibited the endothelin-induced DNA synthesis within the nanomolar range. These results suggest that prostacyclin and carbacyclins are possibly effective in inhibiting the proliferation of vascular smooth muscle cells under some situations in vivo.  相似文献   

10.
Immobilization of penicillin G acylase on glyoxyl agarose and its further hydrophilization by physicochemical modification with ionic polymers has made it possible to perform the direct condensation between (+/-)-2-hydroxy-2-phenylethylamine [(+/-)-1] and different acyl donors in the presence of high concentrations of organic cosolvent (up to 90%) in the reaction medium. Using 50 mM phenyl acetic acid and these drastic reaction conditions, too harsh for any other PGA preparation, we have achieved an almost quantitative transformation (more than 99%) of 10 mM (+/-)-1 into the corresponding amide. Remarkably, the enantioselectivity of the enzyme immobilized on the amine was strongly dependent on the acyl donor employed. Thus, using phenylacetic acid (2), the enantioselectivity was almost negligible (1.3 favoring the S isomer), whereas using S-mandelic acid [(S)-4], the E factor reached a value of 21 (also favoring the S isomer). By using R-mandelic acid [(R)-4], we observed a different enantioselectivity (E was 3.6 favoring the R). At 4 degrees C, the E value reached a value higher than 100 when (S)-4 was used as the acyl donor. The reaction performed under these conditions allowed us to produce (2S,2'S)-N-2'-hydroxy-2'-phenyl)-2-hydroxyphenylacetamide [(2S,2'S)-7] with a diasteromeric excess higher than 98%.  相似文献   

11.
Chloroquine (CQ) and mefloquine (MQ) are no longer potent antimalarial drugs due to the emergence of resistant Plasmodium falciparum. Combination therapy has become the standard for many regimes in overcoming drug resistance. Roxithromycin (ROM), a known p-glycoprotein inhibitor, is reported to have antimalarial activity and it is hoped it will potentiate the effects of both CQ/MQ and reverse CQ/MQ-resistance. We assayed the effects of CQ and MQ individually and in combination with ROM on synchronized P. falciparum (Dd2 strain) cultures. The IC(50) values of CQ and MQ were 60.0+/-5.0 and 16.0+/-3.0 ng/ml; these were decreased substantially when combined with ROM. Isobolograms indicate that CQ-ROM combinations were relatively more synergistic (mean FICI 0.70) than MQ-ROM (mean FICI 0.85) with their synergistic effect at par with CQ-verapamil (VRP) (mean FICI 0.64) and MQ-VRP (mean FICI 0.60) combinations. We conclude that ROM potentiates the CQ/MQ response on multidrug-resistant P. falciparum.  相似文献   

12.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   

13.
Arteflene is a synthetic endoperoxide antimalarial. Its peroxide bridge undergoes iron(II)-mediated reduction in vitro which yields a carbon-centered cyclohexyl radical and a mixture of cis- and trans-alpha,beta-unsaturated ketones (enones). The enones are biliary metabolites in rats and therefore surrogate markers of bioactivation. Arteflene is reported to be more cytotoxic to primary rat hepatocytes than some non-endoperoxide antimalarials. Hepatic metabolism of arteflene was investigated in recirculating isolated perfused rat livers, and the drug's metabolism and cytotoxicity were compared using hepatocytes from male rats. Both preparations metabolized [(14)C]arteflene to cis- and trans-[(14)C]enone, 8-hydroxyarteflene glucuronide and an unassigned isomeric glucuronide. During a 2 h liver perfusion, the cis- and trans-enones recovered in bile represented 8.1 +/- 3.4 and 11.3 +/- 4.6% (mean +/- S.D., N=6), respectively, of the [(14)C]arteflene (52 microM) added to the perfusate. After a 3 h incubation of [(14)C]arteflene (10 microM) with hepatocytes in suspension, the cis- and trans-enones comprised, respectively, 14.8 +/- 7.1 and 2.1 +/- 1.0% (N = 4) of the recovered radioactivity; the corresponding data for cultured hepatocytes being 18.6 +/- 6.9 and 3.3 +/- 2.2%. Arteflene was significantly (P < 0.05) toxic to isolated hepatocytes with reference to extramitochondrial reductase activity (tetrazolium reduction) but not enzyme leakage when the cells were exposed to drug concentrations > or =50 microM for 24 h. Cellular glutathione was depleted under these conditions. Therefore arteflene was acutely cytotoxic, though only at relatively high concentrations, when it was metabolized via a pathway which generates carbon-centered radicals.  相似文献   

14.
Gibbilimbols A [(E)-4-(4-decenyl)phenol, 1], B [(E)-4-(3-decenyl)phenol, 2], C [(E)-4-(4-octenyl)phenol, 3] and D [(E)-4-(3-octenyl)phenol, 4] were synthesized by coupling the phenolic parts with the alkyne parts and then reducing the triple bond of the resulting alkynylphenols. These alkenylphenols (1-4) are the cytotoxic and antibacterial constituents of the leaves of a medicinal plant (Piper gibbilimbum) that is used as a traditional medicine in Papua New Guinea.  相似文献   

15.
Gibbilimbols A [(E)-4-(4-decenyl)phenol, 1], B [(E)-4-(3-decenyl)phenol, 2], C [(E)-4-(4-octenyl)phenol, 3] and D [(E)-4-(3-octenyl)phenol, 4] were synthesized by coupling the phenolic parts with the alkyne parts and then reducing the triple bond of the resulting alkynylphenols. These alkenylphenols (1?4) are the cytotoxic and antibacterial constituents of the leaves of a medicinal plant (Piper gibbilimbum) that is used as a traditional medicine in Papua New Guinea.  相似文献   

16.
Quaternary carbolinium salts have been reported to show improved antimalarial activity and reduced cytotoxicity as compared to electronically neutral beta-carbolines. In this study, mono- and di-methylated quaternary carbolinium cations of manzamine A were synthesized and evaluated for their in vitro antimalarial and antimicrobial activity, cytotoxicity, and also their potential for glycogen synthase kinase (GSK-3beta) inhibition using molecular docking studies. Among the analogs, 2-N-methylmanzamine A (2) exhibited antimalarial activity (IC(50) 0.7-1.0microM) but was less potent than manzamine A. However the compound was significantly less cytotoxic to mammalian kidney fibroblasts and the selectivity index was in the same range as manzamine A.  相似文献   

17.
Effective arterial elastance (E(a)), defined as the ratio of left ventricular (LV) end-systolic pressure and stroke volume, lumps the steady and pulsatile components of the arterial load in a concise way. Combined with E(max), the slope of the LV end-systolic pressure-volume relation, E(a)/E(max) has been used to assess heart-arterial coupling. A mathematical heart-arterial interaction model was used to study the effects of changes in peripheral resistance (R; 0.6-1.8 mmHg x ml(-1) x s) and total arterial compliance (C; 0.5-2.0 ml/mmHg) covering the human pathophysiological range. E(a), E(a)/E(max,) LV stroke work, and hydraulic power were calculated for all conditions. Multiple-linear regression analysis revealed a linear relation between E(a), R/T (where T is cycle length), and 1/C: E(a) = -0.13 + 1.02R/T + 0.31/C, indicating that R/T contributes about three times more to E(a) than arterial stiffness (1/C). It is demonstrated that different pathophysiological combinations of R and C may lead to the same E(a) and E(a)/E(max) but can result in differences of 10% in stroke work and 50% in maximal power.  相似文献   

18.
We have previously shown that cloned rat multidrug resistance-associated protein 3 (Mrp3) has the ability to transport organic anions such as 17beta-estradiol 17-beta-D-glucuronide (E(2)17betaG) and has a different substrate specificity from MRP1 and MRP2 in that glutathione conjugates are poor substrates for Mrp3 (Hirohashi, T., Suzuki, H., and Sugiyama, Y. (1999) J. Biol. Chem. 274, 15181-15185). In the present study, the involvement of Mrp3 in the transport of endogenous bile salts was investigated using membrane vesicles from LLC-PK1 cells transfected with rat Mrp3 cDNA. The ATP-dependent uptake of [(3)H]taurocholate (TC), [(14)C]glycocholate (GC), [(3)H]taurochenodeoxycholate-3-sulfate (TCDC-S), and [(3)H]taurolithocholate-3-sulfate (TLC-S) was markedly stimulated by Mrp3 transfection in LLC-PK1 cells. The extent of Mrp3-mediated transport of bile salts was in the order, TLC-S > TCDC-S > TC > GC. The K(m) and V(max) values for the uptake of TC and TLC-S were K(m) = 15.9 +/- 4.9 microM and V(max) = 50.1 +/- 9.3 pmol/min/mg of protein and K(m) = 3.06 +/- 0.57 microM and V(max) = 161.9 +/- 21.7 pmol/min/mg of protein, respectively. At 55 nM [(3)H]E(2)17betaG and 1.2 microM [(3)H]TC, the apparent K(m) values for ATP were 1.36 and 0.66 mM, respectively. TC, GC, and TCDC-S inhibited the transport of [(3)H]E(2)17betaG and [(3)H]TC to the same extent with an apparent IC(50) of approximately 10 microM. TLC-S inhibited the uptake of [(3)H]E(2)17betaG and [(3)H]TC most potently (IC(50) of approximately 1 microM) among the bile salts examined, whereas cholate weakly inhibited the uptake (IC(50) approximately 75 microM). Although TC and GC are transported by bile salt export pump/sister of P-glycoprotein, but not by MRP2, and TCDC-S and TLC-S are transported by MRP2, but not by bile salt export pump/sister of P-glycoprotein, it was found that Mrp3 accepts all these bile salts as substrates. This information, together with the finding that MRP3 is extensively expressed on the basolateral membrane of human cholangiocytes, suggests that MRP3/Mrp3 plays a significant role in the cholehepatic circulation of bile salts.  相似文献   

19.
Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4'-[(2-methoxy-1,4-phenylene)di-(1E)-2,1-ethenediyl]bis-benzenamine (BMB) and a newly synthesized, red-shifted derivative 4-[(1E)-2-[4-[(1E)-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082) were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE? (Fluorescence-Assisted Resection and Exploration) imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.  相似文献   

20.
An atom efficient, green protocol for the synthesis of fifteen 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles in quantitative yields from the reaction of 1-methyl-3,5-bis[(E)-arylmethylidene]-tetrahydro-4(1H)-pyridinones with malononitrile in presence of solid sodium ethoxide under solvent-free condition is described. The compounds were tested for their in vitro activity against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant tuberculosis (MDR-TB), and Mycobacterium smegmatis using agar dilution method. 2-Amino-4-[4-(dimethylamino)phenyl]-8-(E)-[4-(dimethylamino)phenyl]methylidene-6-methyl-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]-pyridine-3-carbonitrile was found to be the most potent compound (MIC: 0.43microM) against MTB and MDR-TB, being 100 times more active than standard, isoniazid against MDR-TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号