首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A denitrifying Pseudomonas sp. is able to oxidize aromatic compounds compounds completely to CO2, both aerobically and anaerobically. It is shown that benzoate is aerobically oxidized by a new degradation pathway via benzoyl-coenzyme A (CoA) and 3-hydroxybenzoyl-CoA. The organism grew aerobically with benzoate, 3-hydroxybenzoate, and gentisate; catechol, 2-hydroxybenzoate, and protocatechuate were not used, and 4-hydroxybenzoate was a poor substrate. Mutants were obtained which were not able to utilize benzoate as the sole carbon source aerobically but still used 3-hydroxybenzoate or gentisate. Simultaneous adaptation experiments with whole cells seemingly suggested a sequential induction of enzymes of a benzoate oxidation pathway via 3-hydroxybenzoate and gentisate. Cells grown aerobically with benzoate contained a benzoate-CoA ligase (AMP forming) (0.1 mumol min-1 mg-1) which converted benzoate but not 3-hydroxybenzoate into its CoA thioester. The enzyme of 130 kDa composed of two identical subunits of 56 kDa was purified and characterized. Cells grown aerobically with 3-hydroxybenzoate contained a similarly active CoA ligase for 3-hydroxybenzoate, 3-hydroxybenzoate-CoA ligase (AMP forming). Extracts from cells grown aerobically with benzoate catalyzed a benzoyl-CoA- and flavin adenine dinucleotide-dependent oxidation of NADPH with a specific activity of at least 25 nmol NADPH oxidized min-1 mg of protein-1; NADH and benzoate were not used. This new enzyme, benzoyl-CoA 3-monooxygenase, was specifically induced during aerobic growth with benzoate and converted [U-14C]benzoyl-CoA stoichiometrically to [14C]3-hydroxybenzoyl-CoA.  相似文献   

2.
A Bacillus sp., isolated by anaerobic enrichment on a o-phthalic acid-nitrate medium, grew either aerobically or anaerobically on phthalic acid. Cells grown anaerobically on phthalate immediately oxidized phthalate and benzoate with nitrate, whereas aerobic oxidation only occurred after a lag period and was inhibited by chloramphenicol. 2-Fluoro-and 3-fluorobenzoate were formed from 3-fluorophthalate by cells grown anaerobically on phthalate. Aerobically grown cells immediately oxidized phthalate, benzoate, 3-hydroxybenzoate and gentisate with oxygen. The aerobic and anaerobic route of catabolism of phthalate may thus share an initial decarboxylation to benzoate. This is the first report of the anaerobic dissimilation of phthalic acid by a pure bacterial culture.  相似文献   

3.
In the denitrifying member of the beta-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were transformed to the acyl-CoA intermediate by a single CoA ligase (AMP forming) that preferentially acted on benzoate. This benzoate-CoA ligase was purified and characterized as a 57-kDa monomeric protein. Based on V(max)/K(m), the specificity constant for 2-aminobenzoate was 15 times lower than that for benzoate; this may be the reason for the slower growth on 2-aminobenzoate. The benzoate-CoA ligase gene was cloned and sequenced and was found not to be part of the gene cluster encoding the general benzoyl-CoA pathway of anaerobic aromatic metabolism. Rather, it was located in a cluster of genes coding for a novel aerobic benzoate oxidation pathway. In line with this finding, the same CoA ligase was induced during aerobic growth with benzoate. A deletion mutant not only was unable to grow anaerobically on benzoate or 2-aminobenzoate, but also aerobic growth on benzoate was affected. This suggests that benzoate induces a single benzoate-CoA ligase. The product of benzoate activation, benzoyl-CoA, then acts as inducer of separate anaerobic or aerobic pathways of benzoyl-CoA, depending on whether oxygen is lacking or present.  相似文献   

4.
The enzymes catalyzing the formation of coenzyme A (CoA) thioesters of benzoate and 2-aminobenzoate were studied in a denitrifying Pseudomonas sp. anaerobically grown with these aromatic acids and nitrate as sole carbon and energy sources. Three different rather specific aromatic acyl-CoA ligases, E1, E2, and E3, were found which catalyze the formation of CoA thioesters of benzoate, fluorobenzoates, and 2-aminobenzoate. ATP is cleaved into AMP and pyrophosphate. The enzymes were purified, their N-terminal amino acid sequences were determined, and their catalytic and molecular properties were studied. Cells anaerobically grown on benzoate and nitrate contain one CoA ligase (AMP forming) for benzoic acid (E1). It is a homodimer of Mr 120,000 which prefers benzoate as a substrate but shows some activity also with 2-aminobenzoate and fluorobenzoates, although with lower Km. Cells anaerobically grown on 2-aminobenzoate and nitrate contain three different CoA ligases for aromatic acids. The first one is identical with benzoate-CoA ligase (E1). The second enzyme is a 2-aminobenzoate-CoA ligase (E2). It is a monomer of Mr 60,000 which prefers 2-aminobenzoate but also activates benzoate, fluorobenzoates and, less effectively, 2-methylbenzoate, with lower affinities to the latter substrates. The enzymes E1 and E2 have similar activity levels; a third minor CoA ligase activity is due to a different 2-aminobenzoate-CoA ligase. The enzyme (E3) is a monomer of Mr, 65,000 which 2-aminobenzoate pathway (U. Altenschmidt, C. Eckerskorn, and G. Fuchs, Eur. J. Biochem. 194:647-653, 1990); apparently, it is not completely repressed under anaerobic conditions and therefore also is induced to a small extent by 2-aminobenzoate under anaerobic growth conditions.  相似文献   

5.
The growth of a denitrifying Pseudomonas strain on benzoic acid and 2-aminobenzoic acid (anthranilic acid) has been studied. The organism grew aerobically on benzoate, 2-aminobenzoate, and gentisate, but not on catechol or protocatechuic acid. These and other findings suggest that aerobic degradation of benzoic acid was via gentisic acid. Under completely anaerobic conditions in the presence of nitrate, benzoate and 2-aminobenzoate (5 mM each) were oxidized to CO2 with the concurrent reduction of NO 3 - to NO 2 - . Only after complete NO 3 - consumption was NO 2 - reduced to N2. Cells contained a NADP-specific 2-oxoglutaate dehydrogenase, in contrast to a NAD-specific pyruvate dehydrogenase. During anaerobic metabolism of [carboxyl-14C]benzoic acid, 16% of the label of metabolized benzoic acid was incorporated into cell material; this excludes intermediary decarboxylation during anaerobic metabolism. Extracts catalysed the activation of benzoic acid and a variety of its derivatives to the respective aryl-coenzyme A thioesters, ATP being cleaved to AMP and PPi; two synthetase activites were present. Extracts from 2-aminobenzoate-grown cells catalyzed a NADH-dependent reduction of 2-aminobenzoyl-CoA (100 nmol·min-1·mg-1 cell protein) to an unidentified CoA thioester, with a stoichiometric release of NH3 and a stoichiometry of 3 mol NADH oxidized per mol 2-aminobenzyol-CoA reduced when tested under aerobic conditions. The 2-aminobenzoyl-CoA reductase activity was lacking in anaerobic benzoate-grown cells and in aerobic cells. This is taken as evidence that 2-aminobenzoyl-CoA reductase is a key enzyme in a novel reductive pathway of anaerobic 2-aminobenzoic acid metabolism.Dedicated to Prof. Charles W. Evans  相似文献   

6.
The initial reactions involved in anaerobic aniline degradation by the sulfate-reducing Desulfobacterium anilini were studied. Experiments for substrate induction indicated the presence of a common pathway for aniline and 4-aminobenzoate, different from that for degradation of 2-aminobenzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, or phenol. Degradation of aniline by dense cell suspensions depended on CO2 whereas 4-aminobenzoate degradation did not. If acetyl-CoA oxidation was inhibited by cyanide, benzoate accumulated during degradation of aniline or 4-aminobenzoate, indicating an initial carboxylation of aniline to 4-aminobenzoate, and further degradation via benzoate of both substrates. Extracts of alinine or 4-aminobenzoategrown cells activated 4-aminobenzoate to 4-aminobenzoyl-CoA in the presence of CoA, ATP and Mg2+. 4-Aminobenzoyl-CoA-synthetase showed a K m for 4-aminobenzoate lower than 10 M and an activity of 15.8 nmol · min-1 · mg-1. 4-Aminobenzoyl-CoA was reductively deaminated to benzoyl-CoA by cell extracts in the presence of low-potential electron donors such as titanium citrate or cobalt sepulchrate (2.1 nmol · min-1 · mg-1). Lower activities for the reductive deamination were measured with NADH or NADPH. Reductive deamination was also indicated by benzoate accumulation during 4-aminobenzoate degradation in cell suspensions under sulfate limitation. The results provide evidence that aniline is degraded via carboxylation to 4-aminobenzoate, which is activated to 4-aminobenzoyl-CoA and further metabolized by reductive deamination to benzoyl-CoA.  相似文献   

7.
C Lochmeyer  J Koch    G Fuchs 《Journal of bacteriology》1992,174(11):3621-3628
The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.  相似文献   

8.
The anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) was studied in a denitrifying bacterium. Cells grown with 2-hydroxybenzoate were simultaneously adapted to degrade benzoate. Extract of these cells formed benzoate or benzoyl-CoA when incubated under reducing conditions with salicylate, MgATP, and coenzyme A, suggesting a degradation of 2-hydroxybenzoate via benzoate or benzoyl-CoA. This suggestion was supported by enzyme activity measurements. In extracts of 2-hydroxybenzoate-grown cells, the following enzyme activities were detected: two CoA ligases, one specific for 2-hydroxybenzoate, the other for benzoate, and two different enzyme activities catalyzing the reductive transformation of 2-hydroxybenzoyl-CoA. These findings suggest a degradation of salicylic acid by two new enzymes, 2-hydroxybenzoate-CoA ligase (AMP-forming) and 2-hydroxybenzoyl-CoA reductase (dehydroxylating), catalyzing (1) 2-hydroxybenzoate + MgATP + CoASH → 2-hydroxybenzoyl-CoA + MgAMP + PPi (2) 2-hydroxybenzoyl-CoA + 2[H] → benzoyl-CoA + H2O Benzoyl-CoA was dearomatized by reduction of the ring. This represents another case in which benzoyl-CoA is a central intermediate in anaerobic aromatic metabolism. Received: 1 February 1996 / Accepted: 24 February 1996  相似文献   

9.
The initial steps of anaerobic 4-hydroxybenzoate degradation were studied in whole cells and cell extracts of the photosynthetic bacterium Rhodopseudomonas palustris. Illuminated suspensions of cells that had been grown anaerobically on 4-hydroxybenzoate and were assayed under anaerobic conditions took up [U-14C]4-hydroxybenzoate at a rate of 0.6 nmol min-1 mg of protein-1. Uptake occurred with high affinity (apparent Km = 0.3 microM), was energy dependent, and was insensitive to external pH in the range of 6.5 to 8.2 Very little free 4-hydroxybenzoate was found associated with cells, but a range of intracellular products was formed after 20-s incubations of whole cells with labeled substrate. When anaerobic pulse-chase experiments were carried out with cells incubated on ice or in darkness, 4-hydroxybenzoyl coenzyme A (4-hydroxybenzoyl-CoA) was formed early and disappeared immediately after addition of excess unlabeled substrate, as would be expected of an early intermediate in 4-hydroxybenzoate metabolism. A 4-hydroxybenzoate-CoA ligase activity with an average specific activity of 0.7 nmol min-1 mg of protein-1 was measured in the soluble protein fraction of cells grown anaerobically on 4-hydroxybenzoate. 4-Hydroxybenzoyl-CoA was the sole product formed from labeled 4-hydroxybenzoate in the ligase reaction mixture. 4-Hydroxybenzoate uptake and ligase activities were present in cells grown anaerobically with benzoate, 4-hydroxybenzoate, and 4-aminobenzoate and were not detected in succinate-grown cells. These results indicate that the high-affinity uptake of 4-hydroxybenzoate by R. palustris is due to rapid conversion of the free acid to its CoA derivative by a CoA ligase and that this is also the initial step of anaerobic 4-hydroxybenzoate degradation.  相似文献   

10.
A bacterium was isolated by elective culture with p-hydroxybenzoate as substrate and nitrate as electron acceptor. It grew either aerobically or anaerobically, by nitrate respiration, on a range of aromatic compounds. The organism was identified as a pseudomonad and was given the trivial name Pseudomonas PN-1. Benzoate and p-hydroxybenzoate were metabolized aerobically via protocatechuate, followed by meta cleavage catalyzed by protocatechuic acid-4,5-oxygenase, to yield alpha-hydroxy-gamma-carboxymuconic semialdehyde. Pseudomonas PN-1 grew rapidly on p-hydroxybenzoate under strictly anaerobic conditions, provided nitrate was present, even though protocatechuic acid-4,5-oxygenase was repressed. Suspensions of cells grown anaerobically on p-hydroxybenzoate oxidized benzoate with nitrate and produced 4 to 5 mumoles of CO(2) per mumole of benzoate added; these cells did not oxidize benzoate aerobically. The patterns of the oxidation of aromatic substrates with oxygen or nitrate by cells grown aerobically or anaerobically on different aromatic compounds indicated that benzoate rather than protocatechuate was a key intermediate in the early stages of anaerobic metabolism. It was concluded that the pathway for the anaerobic breakdown of the aromatic ring is different and quite distinct from the aerobic pathway. Mechanisms for the anaerobic degradation of the benzene nucleus by Pseudomonas PN-1 are discussed.  相似文献   

11.
The enzyme catalysing the first step in the anaerobic degradation pathway of phenylacetate was purified from a denitrifying Pseudomonas strain KB 740. It catalyses the reaction phenylacetate+CoA+ATP phenylacetyl-CoA+AMP+PPi and requires Mg2+. Phenylacetate-CoA ligase (AMP forming) was found in cells grown anaerobically with phenylacetate and nitrate. Maximal specific enzyme activity was 0.048 mol min-1 x mg-1 protein in the mid-exponential growth phase. After 640-fold purification with 18% yield, a specific activity of 24.4 mol min-1 mg-1 protein was achieved. The enzyme is a single polypeptide with Mr of 52 ±2 kDa. The purified enzyme shows high specificity towards the aromatic inducer substrate phenylacetate and uses ATP preferentially; Mn2+ can substitute for Mg2+. The apparent K m values for phenylacetate, CoA, and ATP are 60, 150, and 290 M, respectively. The soluble enzyme has an optimum pH of 8.5, is insensitive to oxygen, but is rather labile and requires the presence of glycerol and/or phenylacetate for stabilization. The N-terminal amino acid sequence showed no homology to other reported CoA-ligases. The expression of the enzye was studied by immunodetection. It is present in cells grown anaerobically with phenylacetate, but not with mandelate, phenylglyoxylate, benzoate; small amounts were detected in cells grown aerobically with phenylacetate.  相似文献   

12.
Cell extracts of a multiple aromatic auxotroph of Escherichia coli K-12, strain AB2830, grown in the absence of precursors of the quinone rings of the ubiquinone and menaquinone molecules, converted 4-hydroxy[U-14C]benzoate into a mixture of 3-octaprenyl-4-hydroxybenzoate and 2-octaprenylphenol. An octaprenol, farnesylfarnesylgeraniol, was isolated from such cell extracts and characterized by n.m.r. and mass spectroscopy. Neither the octaprenol, nor polyprenylation of 4-hydroxy[U-14C]benzoate, could be detected in cell extracts of strain AB2830 grown in the presence of 0.1mm-4-hydroxybenzoate. It was concluded that, in the biosynthesis of ubiquinone, the polyprenyl side chain is added to 4-hydroxybenzoate as a C40 unit, the active form of which is converted by cell extracts into farnesylfarnesylgeraniol. The multiple aromatic auxotroph, when grown in the absence of 4-hydroxybenzoate but in the presence of 4-aminobenzoate, converted the latter compound into 3-octaprenyl-4-aminobenzoate. This compound was isolated from whole cells and characterized by n.m.r. and mass spectroscopy.  相似文献   

13.
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.  相似文献   

14.
Monofluoro- and monochlorobenzoates did not support the growth of Pseudomonas PN-1, either aerobically or anaerobically (nitrate respiration), when supplied as sole sources of carbon and energy. Anaerobic growth yields on nonfluorinated substrates were increased by p-fluorobenzoate (pFBz) with a utilization of pFBz and release of F-. Cell suspensions grown on p-hydroxybenzoate (pOHBz), either aerobically or anaerobically, only degraded o-fluorobenzoate (oFBz) and pFBz of the monohalogenated benzoates tested. Both compounds were catabolized anaerobically, but not aerobically, with a release of F-. oFBz was immediately attacked, by cells grown anaerobically on pOHBz, whereas pFBz was only degraded after a lag phase; chloramphenicol inhibited the breakdown of pFBz, but not oFBz, thereby indicating the need for additional enzyme(s) to attack pFBz. o-Chlorobenzoate (oClBz) inhibited the anaerobic, but not aerobic, oxidation of pOHBz and stopped anaerobic growth on pOHBz. A mutant was isolated which metabolized pOHBz in the presence of oClBz but it was defective in its anaerobic metabolism of benzoate (Bz). Comparative studies, of the mutant and Pseudomonas PN-1, indicated that the mutation involved a metabolic site common to Bz, oClBz and the monofluorobenzoates. The dependence of the oxidation rate of Bz and oFBz on their concentrations at a millimolar level, in the mutant but not Pseudomonas PN-1, suggested a defect at the permease level: the uptake of 14C-labelled Bz by the mutant was also concentration-dependent. The response of the organism to the inhibitory effect of oClBz on pOHBz catabolism is discussed with respect to its significance in the perturbation of natural degradative processes by unnatural chemicals in the environment.Non-common abbreviations Bz benzoate - pOHBz p-hydroxybenzoate - oFBz o-fluorobenzoate - mFBz m-fluorobenzoate - pFBz p-fluorobenzoate - oClBz o-chlorobenzoate  相似文献   

15.
A new rod-shaped, gram-negative, non-sporing sulfate reducer, strain mAB1, was enriched and isolated from marine sediment samples with 3-aminobenzoate as sole electron and carbon source. Strain mAB1 degraded 3-aminobenzoate completely to CO2 and NH3 with stoichiometric reduction of sulfate to sulfide. Cells contained carbon monoxide dehydrogenase, cytochromes, and sulfite reductase P582. Strain mAB1 degraded also benzoate, 4-aminobenzoate, hydroxybenzoates, and some aliphatic compounds. Besides sulfates, also sulfite was reduced with 3-aminobenzoate as electron donor, but not thiosulfate, sulfur, nitrate, or fumarate. The strain grew in sulfide-reduced mineral medium supplemented with 7 vitamins. Strain mAB1 was tentatively affiliated with the genus Desulfobacterium. Experiments with dense cell supsensions showed benzoate accumulation during 3-aminobenzoate degradation under conditions of sulfate limitation or cyanide inhibition. 3-Aminobenzoate was activated to 3-aminobenzoyl-CoA by cell extracts in the presence of ATP, coenzyme A, and Mg2+. Acitivity of 3-aminobenzoyl-CoA synthetase was 16 nmol per min and mg protein, with a KM for 3-aminobenzoate lower than 50 M. Cell extract of 3-aminobenzoate-grown cells activated also 3-hydroxybenzoate (31.7 nmol per min and mg protein) and benzoate (2.3 nmol per min and mg protein), but not 2-aminobenzoate or 4-aminobenzoate. In the presence of NADH of NADPH, 3-aminobenzoyl-CoA was further metabolized to a not yet identified reduced product.Freshwater enrichments with 3-aminobenzoate in the absence of an extenal electron acceptor led to a stable methanogenic enrichment culture consisting of three types of bacteria. 3-Aminobenzoate was degraded completely to CO2 and stoichiometric amounts of CH4, with intermediary acetate accumulation.  相似文献   

16.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   

17.
An increase in the molar growth yield (YX/S = 14.3–20.3 g/mol) on glucose (25 mM) was achieved after the transition of Zymomonas mobilis ATCC 29191 from anaerobic to aerobic steady state growth at dilution rates of D = 0.31–0.40 1/h and under oxygen-unlimited conditions. The transfer of anaerobically or aerobically grown steady state cells into a fresh medium resulted in the higher values of YX/S. A positive correlation was established between biomass and acetaldehyde yield within the range of 5–9 mM acetaldehyde in the medium. An inhibitory effect of the exogenously added acetaldehyde (Ki = 16.7 ± 2.8 mM) on the ATPase activity was observed in vitro, using cell-free extracts of anaerobically grown Z. mobilis. The results obtained provide evidence that the increased values of biomass yield could be explained by the redirection of ATP usage during aerobic growth of Z. mobilis.  相似文献   

18.
Mixed cultures of bacteria, enriched from aquatic sediments, grew anaerobically on all three isomers of phthalic acid. Each culture grew anaerobically on only one isomer and also grew aerobically on the same isomer. Pure cultures were isolated from the phthalic acid (o-phthalic acid) and isophthalic acid (m-phthalic acid) enrichments that grew aerobically on phthalic and isophthalic acids. Cell suspension experiments indicated that protocatechuate is an intermediate of aerobic catabolism. Pure cultures which grew aerobically on terephthalic acid (p-phthalic acid) could not be isolated from the enrichments, and neither could pure cultures that grew anaerobically on any of the isomers. Cell suspension experiments suggested that separate pathways exist for the aerobic and anaerobic oxidation of phthalic acids. Each enrichment culture used only one phthalic acid isomer under anaerobic conditions, but all isomers were simultaneously adapted for the anaerobic catabolism of benzoate. Cells grown anaerobically on a phthalic acid immediately attacked the isomer under anaerobic conditions, whereas there was a lag before aerobic breakdown occurred, and, for phthalic and terephthalic acids, chloramphenicol stopped aerobic adaptation but had no effect on anaerobic catabolism. This work suggests that phthalic acids are biodegradable in anaerobic environments.  相似文献   

19.
Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific.  相似文献   

20.
The capability of five strains of the phototrophic bacteriumRhodopseudomonas palustris to produce molecular hydrogen (H2) from the aromatic acids benzoate,p-hydroxybenzoate, cinnamate and D- and L-mandelate was investigated. Optimal H2 production was achieved when the strains were grown anaerobically in the light at 10,000 lx under nitrogen (N) limitation using 1 mM L-glutamate as an N source. In the presence of 2 mM benzoate or L-mandelate as carbon and electron sources, strain DSM 131 produced 45% H2 of the maximal theoretical value and strain F2 32%, respectively. Increased H2 production correlated with increased nitrogenase activities, but H2 formation was not further stimulated by inhibition of the H2 uptake (hup) hydrogenase with ethylenediaminetetraacetic acid (EDTA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号