首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NMR model is presented for the structure of HMG-D, one of the DROSOPHILA: counterparts of mammalian HMG1/2 proteins, bound to a particular distorted DNA structure, a dA(2) DNA bulge. The complex is in fast to intermediate exchange on the NMR chemical shift time scale and suffers substantial linebroadening for the majority of interfacial resonances. This essentially precludes determination of a high-resolution structure for the interface based on NMR data alone. However, by introducing a small number of additional constraints based on chemical shift and linewidth footprinting combined with analogies to known structures, an ensemble of model structures was generated using a computational strategy equivalent to that for a conventional NMR structure determination. We find that the base pair adjacent to the dA(2) bulge is not formed and that the protein recognizes this feature in forming the complex; intermolecular NOE enhancements are observed from the sidechain of Thr 33 to all four nucleotides of the DNA sequence step adjacent to the bulge. Our results form the first experimental demonstration that when binding to deformed DNA, non-sequence-specific HMG proteins recognize the junction between duplex and nonduplex DNA. Similarities and differences of the present structural model relative to other HMG-DNA complex structures are discussed.  相似文献   

2.
The fold of the murine Sox-5 (mSox-5) HMG box in free solution has been determined by multidimensional NMR using (15)N-labeled protein and has been found to adopt the characteristic twisted L-shape made up of two wings: the major wing comprising helix 1 (F10--F25) and helix 2 (N32--A43), the minor wing comprising helix 3 (P51--Y67) in weak antiparallel association with the N-terminal extended segment. (15)N relaxation measurements show considerable mobility (reduced order parameter, S(2)) in the minor wing that increases toward the amino and carboxy termini of the chain. The mobility of residues C-terminal to Q62 is significantly greater than the equivalent residues of non-sequence-specific boxes, and these residues show a weaker association with the extended N-terminal segment than in non-sequence boxes. Comparison with previously determined structures of HMG boxes both in free solution and complexed with DNA shows close similarity in the packing of the hydrophobic cores and the relative disposition of the three helices. Only in hSRY/DNA does the arrangement of aromatic sidechains differ significantly from that of mSox-5, and only in rHMG1 box 1 bound to cisplatinated DNA does helix 1 have no kink. Helix 3 in mSox-5 is terminated by P68, a conserved residue in DNA sequence-specific HMG boxes, which results in the chain turning through approximately 90 degrees.  相似文献   

3.
In this study we characterized regulation of the Na+/H+ exchanger promoter in several tissue types. A conserved poly (dA:dT) region was important in regulation of the promoter. Nuclear extracts from rat myocardium and from mouse proximal tubule cells protected the poly (dA:dT) region of the NHE1 promoter. A protein from nuclear extracts also bound to the poly (dA:dT) element in gel mobility shift binding assays. The binding was specific and was removed by mutations in the poly (dA:dT) region. Characterization of the binding to the poly (dA:dT) region in gel mobility shift assays showed that it was reduced by high concentrations of the divalent cations Mg++ and Mn++. The inhibition by divalent cations was reduced by decreasing the pH of the binding assay. N-terminal sequencing of the poly (dA:dT) binding protein showed that it was a member of the HMG (high mobility group) family of nuclear proteins which are important in cell growth and proliferation. The results are the first direct detection of a protein that regulates the NHE1 promoter.  相似文献   

4.
The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.  相似文献   

5.
The interaction of ethidium with synthetic DNA and RNA double-stranded polymers at 0.01 M ionic strength, pH 7.0, has been studied by fluorimetry at low drug to nucleotide ratios. Binding constants have been calculated assuming an excluded-neighbouring site model for the interaction of ethidium with double-stranded polymers. The values obtained are poly d(AT).poly d(AT), 9.5 X 10(6) M-1; poly dA.poly dT, 6.5 X 10(5) M-1; poly d(GC).poly d(GC), 9.9 X 10(6) M-1; poly dG,poly dC, 4.5 X 1-(6) M-1; poly d(AC); poly d(GT), 9.8 X 10(6) M-1; poly d(AG).poly d(CT), 1.3 X 10(6) M-1; poly rA.poly rU, 4.1 X 10(7) M-1. The displacement of ethidium from poly d(AT).poly d(AT) by 9-aminoacridine and an acridine-containing antitumor agent (NSC 156303; 4'-(9-acridinylamino)methanesulphon-m-anisidide) has also been examined.  相似文献   

6.
The method of circular dichroism (CD) was used to compare DNA behavior during its interaction with linker histone H1 and with nonhistone chromosomal protein HMG1 at different ionic strength and at different protein content in the system. The role of the negatively charged C-terminal segment of HMG1 was analyzed using recombinant protein HMG1-(A+B), which lacks the C-terminal amino acid sequence. The -type CD spectra were common for DNA interaction with histone H1, but no spectra of this type were observed in HMG1–DNA systems even at high ionic strength. The CD spectrum of the truncated recombinant protein at high salt concentration somewhat resembled the +-type spectrum. Two very intense positive bands were located near 215 nm and near 272 nm, and the whole CD spectrum was positive. The role of the C-terminal part of HMG1 in the formation of ordered DNA–protein complexes is discussed.  相似文献   

7.
8.
9.
Poly(dA).poly(dT), but not B-form DNA, is specifically recognized by experimentally induced anti-kinetoplast or anti-poly(dA).poly(dT) immunoglobulins. Antibody binding is completely competed by poly(dA).poly(dT) and poly(dA).poly(dU) but not by other single- or double-stranded DNA sequences in a right-handed B-form. Antibody interaction with poly(dA).poly(dT) depends on immunoglobulin concentration, incubation time and temperature, and is sensitive to elevated ionic strengths. Similar conformations, for example, (dA)4-6 X (dT)4-6, in the kinetoplast DNA of the parasite Leishmania tarentolae are also immunogenic and induce specific anti-poly(dA).poly(dT) antibodies. These antibody probes specifically recognize nuclear and kinetoplast DNA in fixed flagellated kinetoplastid cells as evidenced by immunofluorescence microscopy. Anti-poly(dA).poly(dT) immunofluorescence is DNase-sensitive and competed by poly(dA).poly(dT), but not other classical double-stranded B-DNAs. Thus, these unique cellular B'-DNA helices are immunogenic and structurally similar to synthetic poly(dA).poly(dT) helices in solution.  相似文献   

10.
11.
The interaction of high mobility group protein 1 (HMG 1) isolated from chicken erythrocytes with DNA has been characterized using the intrinsic tryptophan fluorescence of the protein as a probe. It was found that the fluorescence is quenched approximately 30% upon binding to either single- or double-stranded DNA. Fluorescent titrations indicate that the physical site size for HMG 1 binding on native DNA is approximately 14 base pairs (or 14 bases for binding to single-stranded DNA). Binding to single-stranded poly(dA) is only slightly dependent on ionic strength, although the affinity for double-stranded DNA is strongly ionic strength-dependent and has an optimum at approximately 100-120 mM Na+. Above this range, binding to native DNA is virtually all electrostatic in nature. Although the affinity of HMG 1 for single-stranded DNA is higher than that for double-stranded DNA at the extremes of the ionic range studied, no clear evidence for a helix-destabilizing activity was obtained. At low ionic strength, the protein actually stabilized DNA against thermal denaturation, while at high ionic strength, HMG 1 appears to undergo denaturation below the Tm of the DNA. Studies of the environment of the tryptophan fluorophores using collisional quenchers iodide, cesium, and acrylamide suggest that the predominant fluorophore is relatively exposed but constrained in a rigid, positively charged environment.  相似文献   

12.
The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions between these groups, i.e. the packing density at the interface must be lower than for the sequence-specific Sox-5 HMG box.  相似文献   

13.
We have studied the interaction of poly(rA) and poly(rU) with natural DNAs containing (dA.dT)n sequences. The results indicate that hybridization of poly(rA) to denatured DNA can be used to estimate the size and frequency of large (dA.dT)n tracts, whereas hybridization with poly(rU) does not give reliable information on these points. In 6.6 M CsCl, poly(rU) can form stable complexes with denatured DNA containing short (dA)n tracts (n less than or equal to 6), whereas binding of poly(rA) to denatured DNA under these conditions requires much larger (dT)n tracts (estimated n greater than 13). Moreover, binding of poly(rA) requires pre-hybridization in low salt, because free poly(rA) precipitates in 6.6 M CsCl.  相似文献   

14.
15.
The binding of propidium to poly(dA).poly(dT) [poly(dA.dT)] and to poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]] has been compared under a variety of solution conditions by viscometric titrations, binding studies, and kinetic experiments. The binding of propidium to poly[d(A-T)2] is quite similar to its binding to calf thymus deoxyribonucleic acid (DNA). The interaction with poly(dA.dT), however, is quite unusual. The viscosity of a poly(dA.dT) solution first decreases and then increases in a titration with propidium at 18 degrees C. The viscosity of poly[d(A-T)2] shows no decrease in a similar titration. Scatchard plots for the interaction of propidium with poly(dA.dT) show the classical upward curvature for positive cooperativity. The curvature decreases as the temperature is increased in binding experiments. A van't Hoff plot of the observed binding constants yields an apparent positive enthalpy of approximately +6 kcal/mol for the propidium-poly(dA.dT) interaction. Propidium binding to poly[d(A-T)2] shows no evidence for positive cooperativity, and the enthalpy change for the reaction is approximately -9 kcal/mol. Both the magnitude of the dissociation constants and the effects of ionic strength are quite similar for the dissociation of propidium from poly(dA-T)2] and from poly[d(A-T)2], suggesting that the intercalated states are similar for the two complexes. The observed association reactions, under pseudo-first-order conditions, are quite different. Plots of the observed pseudo-first-order association rate constant vs. polymer concentration have much larger slopes for propidium binding to poly[d(A-T)2] than to poly(dA.dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Four monoclonal antibodies (Jel 229, 239, 241, 242) which bound to duplex DNA were prepared from two autoimmune female NZB/NZW mice. Their binding to various nucleic acids was investigated by a competitive solid phase radioimmune assay which allows the estimation of relative binding constants. None of the antibodies showed any consistent variation of binding constant with base composition and thus they must recognize features of the DNA backbone. Jel 241 binds across the major groove but the interaction with poly(pyrimidine) X poly(purine) DNAs was barely detectable. This antibody appears to recognize the "alternating-B" conformation which is promoted by methylation of pyrimidines in alternating sequences. The other three antibodies bind in the minor groove. In particular, for Jel 229 the preferred antigen was poly(dG) X poly(dC) with only weak binding to poly(dA) X poly(dT). This suggests a requirement for a wide minor groove. Thus autoimmune antibodies provide examples of "analogue" recognition and can be used to detect structural variations in the grooves of duplex DNA.  相似文献   

17.
D P?rschke  H Rauh 《Biochemistry》1983,22(20):4737-4745
The binding of gene 5 protein to various single-stranded polynucleotides is investigated by fluorescence titrations and stopped-flow measurements. The association state of gene 5 protein itself is analyzed by equilibrium sedimentation: the monomer-dimer equilibrium found in the micromolar concentration range is described by a stability constant of 8 X 10(5) M-1. The fluorescence quenching upon binding to polynucleotides, studied over a broad concentration range and analyzed in terms of a cooperative excluded-site binding model, provides binding constants for "isolated" and for "cooperative" sites. The cooperativity for various ribo- and deoxyribopolymers is between 400 and 800 and is virtually independent of the ionic strength. The binding to isolated sites is strongly dependent upon the ionic strength; analysis in terms of polyelectrolyte theory indicates the compensation of 4 +/- 0.5 charges upon complex formation. The number of nucleotide residues covered by one protein molecule is also found to be 4 +/- 0.5 units. The affinity of gene 5 protein for polynucleotides increases in the series poly(C) less than poly(dA) less than poly(A) less than poly(U) much less than poly(dT); the binding constant for poly(dT) is roughly a factor of 1000 higher than that for the other polymers. Model studies with Lys-Tyr-Lys and Lys-Trp-Lys suggest that the preferential interaction with poly(dT) is not simply due to enhanced stacking interactions between the aromatic amino acids and the thymine residues. Stopped-flow reaction curves obtained by mixing of gene 5 protein with poly(dT) in the micromolar concentration range show three relaxation processes with time constants between 1 ms and 1 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Sequence-dependency of high-mobility group protein (HMG) 1-inducedDNA bending is examined for microsatellites using a circularizationassay which can measure the extent of bending. Fragments of133 bp containing (GGA/TCC)11in the middle showed greater bendingthan those harboring (GAA/TTC)11 and (GT/AC)17 repeats, andfragments possessing (GA/TC)17 exhibited only slight bending.Differences were not detected for fragments having the repeatsnear the end. Filter binding assays showed no difference intheir binding affinity, suggesting that GGA/TCC repeats aremore flexible than the other three repeats as concerns HMG1-inducedbending. These results suggest that the mammalian genomes compriseflexible and inflexible regions of microsatellites which mightplay roles in chromatin architectures and in dynamic packagingof genomic DNA during the cell division cycle.  相似文献   

19.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA–dT).poly(dA–dT) and poly(dG–dC).poly(dG–dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln Ka versus [Na+] for poly(dA).poly(dT) and poly(dA–dT).poly(dA–dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (ΔCpo) of berberine binding to poly(dA).poly(dT), poly(dA–dT).poly(dA–dT), Clostridium perfringens and calf thymus DNA were − 98, − 140, − 120 and − 110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

20.
Using the technique of pulse radiolysis it has been demonstrated that the interaction of SO4.- with deoxynucleosides (k approximately less than 2 X 10(8)-2.3 X 10(9) dm3 mol-1 s-1) in aqueous solution at pH 7.0 results in the formation of the corresponding one-electron oxidized radicals which either deprotonate or hydrate to yield OH adducts. Based upon the ease of oxidation of the deoxynucleosides, dG, dA, dC, dT, by SO4.-, the apparent redox potentials are in the order dG much greater than dA approximately equal to dC greater than dT. With the exception of deoxyuridine, the deoxynucleoside radicals produced on interaction with SO4.- have been shown to have oxidizing properties based upon the interactions with tetranitromethane and the nitroxyls, TMPN and NPPN. The deoxynucleoside radicals (dG, dA and dC) do not interact with oxygen (k less than 10(6) dm3 mol-1 s-1) in contrast to the interaction observed with the thymidine radical (k = 2.5 X 10(7) dm3 mol-1 s-1). The implications of these findings are presented in terms of the properties of the discussed radicals as relating to those of potential DNA base radicals (positive centres) produced by direct energy deposition within DNA. The use of SO4.- to mimic, to some extent, the effects of direct energy deposition in DNA may assist in our understanding of the resulting molecular processes relevant to radiobiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号