首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ca2+ on the rate of pyruvate carboxylation was studied in liver mitochondria from control and glucagon-treated rats, prepared under conditions that maintain low Ca2+ levels (1-3 nmol/mg of protein). When the matrix-free [Ca2+] was low (less than 100 nM), the rate of pyruvate carboxylation was not significantly different in mitochondria from control and glucagon-treated rats. Accumulation of 5-8 nmol of Ca2+/mg, which increased the matrix [Ca2+] to 2-5 microM in both preparations, significantly enhanced pyruvate carboxylase flux by 20-30% in the mitochondria from glucagon-treated rats, but had little effect in control preparations. Higher levels of Ca2+ (up to 75 nmol/mg) inhibited pyruvate carboxylation in both preparations, but the difference between the mitochondria from control and glucagon-treated animals was maintained. The enhancement of pyruvate dehydrogenase flux by mitochondrial Ca2+ uptake was also significantly greater in mitochondria from glucagon-treated rats. These differential effects of Ca2+ uptake on enzyme fluxes did not correlate with changes in the mitochondrial ATP/ADP ratio, the pyrophosphate level, or the matrix volume. Arsenite completely prevented 14CO2 incorporation when pyruvate was the only substrate, but caused only partial inhibition when succinate and acetyl carnitine were present as alternative sources of energy and acetyl-CoA. Under these conditions, mitochondria from glucagon-treated rats were less sensitive to arsenite than the control preparations, even at low Ca2+ levels. We conclude that the Ca(2+)-dependent enhancement of pyruvate carboxylation in mitochondria from glucagon-treated rats is a secondary consequence of pyruvate dehydrogenase activation; glucagon treatment is suggested to affect the conditions in the mitochondria that change the sensitivity of the pyruvate dehydrogenase complex to dephosphorylation by the Ca(2+)-sensitive pyruvate dehydrogenase phosphatase.  相似文献   

2.
Glucagon administration to the intact rat has been shown to stimulate pyruvate metabolism in liver mitochondria, presumably by increasing pyruvate transport into the organelle. In this report, we used alanine in place of pyruvate to examine the possibility that glucagon might stimulate pyruvate carboxylation per se independent of its postulated action on pyruvate transport. In agreement with previous reports, injection of a low dose of glucagon (50 micrograms/kg of rat) increased respiration, ATP synthesis, pyruvate decarboxylation, and CO2 fixation in liver mitochondria subsequently isolated. When alanine was used as a substrate, CO2 fixation, but not decarboxylation, was increased in liver mitochondria isolated from glucagon-treated rats. Pyruvate accumulation under these conditions was significantly lower in the glucagon-treated rat preparation. When mitochondria were incubated in a HCO3- -deficient buffer, pyruvate accumulation was identical in both preparations. The addition of a pyruvate transport inhibitor, alpha-cyanohydroxycinnamate (0.5 mM), inhibited CO2 fixation with pyruvate by 70%, but had no effect when alanine was used. Our data therefore suggest that glucagon stimluates mitochondrial pyruvate carboxylation independent of its possible action on pyruvate transport.  相似文献   

3.
Treatment of rats for 3 h with dexamethasone was shown to stimulate both pyruvate carboxylation and decarboxylation in the subsequently isolated mitochondria. The effect of hormone treatment on pyruvate carboxylation was also apparent in liver homogenates assayed within minutes of killing the animal and was independent of the temperature at which the assay was performed, suggesting that it was not an artifact of the mitochondrial preparation procedure. The stimulation of both aspects of pyruvate metabolism in the intact organelle was independent of the induction of either pyruvate carboxylase or pyruvate dehydrogenase. Similarly, there was no change in the percentage of pyruvate dehydrogenase in the active form, indicating that the effect of steroid treatment on pyruvate oxidation was not via changes in the degree of phosphorylation of the enzyme. Adrenalectomizing the animals for a period of 14 days before the experiment had no effect on either parameter. Glucocorticoid treatment of the animals increased the rate of pyruvate uptake into the mitochondria, as measured by the titration of pyruvate metabolism with alpha-cyano-4-hydroxycinnamate, a specific inhibitor of the pyruvate translocator. It also increased the intramitochondrial concentrations of acetyl-CoA and ATP and led to an elevated [ATP]/[ADP] ratio within the mitochondria. It is suggested that both enzymes of pyruvate metabolism exist in the mitochondria under considerable restraint and that glucocorticoids act to relieve this restraint by alterations in substrate supply and the intramitochondrial concentrations of effector molecules.  相似文献   

4.
Glucagon treatment of rats allowed the isolation of liver mitochondria with enhanced rates of pyruvate metabolism measured in either sucrose or KCl media. No change in the activity of the pyruvate carrier itself was apparent, but under metabolizing conditions, use of the inhibitor of pyruvate transport, alpha-cyano-4-hydroxycinnamate, demonstrated that pyruvate transport limited the rate of pyruvate metabolism. The maximum rate of transport under metabolizing conditions was enhanced by glucagon treatment. Problems involved in measuring the transmembrane pH gradient under metabolizing conditions are discussed and a variety of techniques are used to estimate the matrix pH. From the distribution of methylamine, ammonia and D-lactate and the Ki for inhibition by alpha-cyano-4-hydroxycinnamate it is concluded that the matrix is more acid than the medium and that the pH of the matrix rises after glucagon treatment. The increase in matrix pH stimulates pyruvate transport. The membrane potential, ATP concentration and O2 uptake were also increased under metabolizing conditions in glucagon-treated mitochondria. These changes were correlated with a stimulation of the respiratory chain which can be observed in uncoupled mitochondria [Yamazaki (1975) J. Biol. Chem. 250, 7924--7930]. The mitochondrial Mg2+ content (mean +/- S.E.M.) was increased from 38.8 +/- 1.2 (n = 26) to 47.5 +/- 2.0 (n = 26) ng-atoms/mg by glucagon and the K+ content from 126.7 +/- 10.3 (n = 19) ng-atoms/mg. This may represent a change in membrane potential induced by glucagon in vivo. The physiological significance of these results in the control of gluconeogenesis is discussed.  相似文献   

5.
1. Adipocytes from fed and fasted (24 hr) groups of rats were fractionated into mitochondria, microsomes and plasma membranes. 2. Fasting significantly decreased the mitochondrial activity of palmitoyl-CoA synthetase, palmitoyl-CoA hydrolase, beta-oxidation and pyruvate dehydrogenase. 3. Fasting elevated intramitochondrial long-chain acyl-CoA. 4. Pyruvate dehydrogenase was inhibited 50% by addition of 30 microM palmitoyl-CoA. 5. Fasting-induced changes in palmitoyl-CoA metabolism may modulate pyruvate dehydrogenase activity in adipocyte mitochondria.  相似文献   

6.
(1) The effects of changes in the intramitochondrial volume, benzyl alcohol treatment and calcium-induced mitochondrial aging on the behaviour of liver mitochondria from control and glucagon-treated rats are reported. (2) The stimulatory effects of glucagon on mitochondrial respiration, pyruvate metabolism and citrulline synthesis could be mimicked by hypo-osmotic treatment of control mitochondria and reversed by calcium-induced aging of mitochondria or by treatment with 20 mM benzyl alcohol. Hypo-osmotic treatment increased the matrix volume whilst aging but not benzyl alcohol decreased this parameter. (3) Liver mitochondria from glucagon and adrenaline-treated rats were shown to be less susceptible to damage by exposure to calcium than control mitochondria and frequently showed slightly (15%) elevated intramitochondrial volumes. (4) Aging, benzyl alcohol and hypo-osmotic media increased the susceptibility of mitochondria to damage caused by exposure to calcium. (5) Glucagon-treated mitochondria were less leaky to adenine nucleotides than control mitochondria. (6) These results suggest that glucagon may exert its action on a wide variety of mitochondrial parameters through a change in the disposition of the inner mitochondrial membrane, possibly by stabilisation against endogenous phospholipase A2 activity. This effect may be mimicked by an increase in the matrix volume or reversed by calcium-dependent mitochondrial aging.  相似文献   

7.
1. Previous studies showed that the activation of pyruvate dehydrogenase within intact rat heart mitochondria of pyruvate is much diminished in mitochondria from starved or diabetic animals [see Kerbey, Randle, Cooper, Whitehouse, Pask & Denton (1976) Biochem. J. 154, 327-348]. In the present study, diminished responses to added Ca2+ and ADP were also found in these mitochondria. 2. Starvation or diabetes did not affect the mitochondrial respiratory control ratio of the ATP content. Moreover, starvation and diabetes did not alter the response of the intramitochondrial Ca2+-sensitive enzyme, 2-oxoglutarate dehydrogenase, to changes in the extramitochondrial concentration of Ca2+ and 2-oxoglutarate, thus indicating that there were no appreciable changes in the distribution of Ca2+ and H+ across the mitochondrial inner membrane. 3. Pyruvate, Ca2+ and ADP were found to have synergistic effects on pyruvate dehydrogenase activity, particularly in mitochondria from starved and diabetic rats. 4. The results suggest that the effects of diabetes and starvation on pyruvate dehydrogenase are not brought about by changes in the distribution of these effectors across the mitochondrial inner membrane or by changes in the intrinsic sensitivity of the kinase or phosphatase of the pyruvate dehydrogenase system to pyruvate, Ca2+ or ADP; rather it is probably that there is an increase in the maximum activity of kinase relative to that of the phosphatase. 6. The results also lend further support to the hypothesis that adrenaline may bring about the activation of pyruvate dehydrogenase in the rat heart by an increase in the intramitochondrial concentration of Ca2+.  相似文献   

8.
Phenylephrine effect on liver and kidney cortex mitochondrial pyruvate concentration was investigated. While in liver the alpha 1-adrenergic agent produced a decrease in pyruvate content, a significant increase was observed in kidney, even in the presence of 0.5 mM alpha-cyano-4-hydroxy-cinnamate. These changes were not observed when pyruvate was formed by intramitochondrial transamination of alanine, suggesting a role for the pyruvate transport across mitochondrial membranes in the regulation of mitochondrial pyruvate metabolism in kidney cortex. This was corroborated measuring the phenylephrine effect on pyruvate carboxylation.  相似文献   

9.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

10.
Isolated rat liver mitochondria incubated in the presence of 3-hydroxybutyrate display a markedly increased rate of pyruvate carboxylation as measured by malate and citrate production from pyruvate. The stimulation was demonstrable both with exogenously added pyruvate, even at saturating concentration, and with pyruvate intramitochondrially generated from alanine. The concentration of DL-3-hydroxybutyrate required for half-maximal stimulation amounted to about 1.5 mM. The intramitochondrial ATP/ADP ratio as well as the matrix acetyl-CoA level was found to remain unchanged by 3-hydroxybutyrate exposure, which, however, lowered the absolute intramitochondrial contents of the respective adenine nucleotides. The effects of 3-hydroxybutyrate were diminished by the concomitant addition of acetoacetate. Moreover, a direct relationship between mitochondrial reduction by proline and the rate of pyruvate carboxylation was observed. The results seem to indicate that the mitochondrial oxidation--reduction state might be involved in the expression of the 3-hydroxybutyrate effect. As to the physiological relevance of the findings, 3-hydroxybutyrate could be shown to activate pyruvate carboxylation in isolated hepatocytes.  相似文献   

11.
Inorganic phosphate stimulates the release of Mg++ from liver mitochondria, depending on concentration; a concentration as low as 0.1 mM phosphate is already effective. The process is dependent on the electron transfer of the respiratory chain, and its rate is highest under conditions of endogenous respiration and with ascorbate and TMPD as substrates, respectively. The phosphate stimulated release of Mg++ is followed, with a pronounced delay, by a Ca++ efflux and a swelling of mitochondria. Addition of EGTA strongly reduced the rate of Mg++ liberation in the presence and absence of inorganic phosphate. Exogenous Ca++ is able to abolish the EGTA effect. ADP and ATP inhibit the phosphate stimulated release of Mg++. Phosphoenol pyruvate and free fatty acids enhance the rate of Mg++ and Ca++ efflux from the mitochondria. The results permit the conclusion that inorganic phosphate, Ca++ and various metabolites of the cell metabolism influence the Mg++ distribution between the extra- and intramitochondrial space, thus controlling the permeability of the mitochondrial inner membrane for monovalent cations.  相似文献   

12.
alpha-Cyano-beta-(1-phenylindol-3-yl)acrylate inhibited pyruvate transport into both liver and heart mitochondria approximately linearly with respect to its concentration until 65% inhibition was achieved. The extent of inhibition was dependent on the mitochondrial protein concentration. By extrapolation of plots of inhibition versus inhibitor concentration to total inhibition, or by mathematical analysis of the plots, the concentration of pyruvate transporter molecules per mg of protein was calculated to be approximately 100 pmol/mg for both heart and liver mitochondria, and the Ki about 7 nM. The data also suggest that pyruvate transport is rate-limiting for pyruvate oxidation by heart mitochondria in State 3, but not by liver mitochondria.  相似文献   

13.
Hepatic mitochondria isolated in 0.3 M-sucrose or 0.3 M-mannitol from rats treated for 3h with dexamethasone displayed stimulated rates of pyruvate carboxylation and decarboxylation and citrulline synthesis when compared with organelles from control animals. Mitochondria isolated in mannitol also displayed elevated rates of pyruvate carboxylation and decarboxylation when compared with those isolated in sucrose, and this stimulation was shown to be independent of the lengthy isolation procedure. Citrulline synthesis proceeded at similar rates in mitochondria isolated in either sugar. The concentration of exchangeable adenine nucleotides was identical in mitochondria isolated in sucrose or mannitol, suggesting that those prepared in the former sugar are not more permeable to metabolites than those prepared in the latter. The matrix volume of mitochondria isolated in mannitol was greater than that of mitochondria isolated in sucrose, and the effect of mannitol on pyruvate metabolism was mimicked by swelling the organelles in hypo-osmotic sucrose. Measurements of the extra-matrix volume by using [14C]sucrose or [14C]mannitol suggest that mannitol can permeate mitochondria to a greater extent than can sucrose. The possibility that mannitol elicits its effect by entering the mitochondrial matrix and so initiating swelling is discussed.  相似文献   

14.
Mitochondria from glucagon-treated rats oxidize succinate, but not ascorbate plus tetramethylphenylenediamine, faster in the uncoupled state than do control mitochondria. The rate of O(2) uptake in the presence of both substrates is equal to the sum of the rates of the O(2) uptake in the presence of either substrate alone. It is concluded that the mitochondrial respiratory chain is limited at some point between cytochromes b and c and that this step is regulated by glucagon. Measurement of the cytochrome spectra under uncoupled conditions in the presence of succinate and rotenone demonstrates a crossover between cytochromes c and c(1) when control mitochondria are compared with those from glucagon-treated rats, cytochrome c being more oxidized and cytochrome c(1) more reduced in control mitochondria. Under conditions where pyruvate metabolism is studied the control mitochondria are generally more oxidized than those from glucagon-treated rats, the redox state of cytochrome b-566 correlating with the rate of pyruvate metabolism in sucrose medium. However, when the redox state of the mitochondria is taken into account, a crossover between cytochromes c and c(1) is again apparent. The spectra of the b cytochromes are complex, but cytochrome b-562 appears to become more reduced relative to cytochrome b-566 in mitochondria from glucagon-treated rats than in control mitochondria. This can be explained by the existence of a more alkaline matrix in glucagon-treated rats, the redox potential for cytochrome b being pH-sensitive. It is concluded that glucagon stimulates electron flow between cytochromes c(1) and c. The physiological significance of these findings is discussed.  相似文献   

15.
Insulin resistance is a characteristic feature of type 2 diabetes and obesity. Insulin-resistant individuals manifest multiple disturbances in free fatty acid (FFA) metabolism and have excessive lipid accumulation in insulin target tissues. Although much evidence supports a causal role for altered FFA metabolism in the development of insulin resistance, i.e., "lipotoxicity", the intracellular mechanisms by which elevated plasma FFA levels cause insulin resistance have yet to be completely elucidated. Recent studies have implicated a possible role for mitochondrial dysfunction in the pathogenesis of insulin resistance in skeletal muscle. We examined the effect of FFA metabolites [palmitoyl carnitine (PC), palmitoyl-coenzyme A (CoA), and oleoyl-CoA] on ATP synthesis in mitochondria isolated from mouse and human skeletal muscle. At concentrations ranging from 0.5 to 2 microM, these FFA metabolites stimulated ATP synthesis; however, above 5 microM, there was a dose-response inhibition of ATP synthesis. Furthermore, 10 microM PC inhibits ATP synthesis from pyruvate. Elevated PC concentrations (> or =10 microM) inhibit electron transport chain activity and decrease the mitochondrial inner membrane potential. These acquired mitochondrial defects, caused by a physiological increase in the concentration of FFA metabolites, provide a mechanistic link between lipotoxicity, mitochondrial dysfunction, and muscle insulin resistance.  相似文献   

16.
Stimulation of hepatocytes with vasopressin evokes increases in cytosolic free Ca2+ ([Ca2+]c) that are relayed into the mitochondria, where the resulting mitochondrial Ca2+ ([Ca2+]m) increase regulates intramitochondrial Ca2+-sensitive targets. To understand how mitochondria integrate the [Ca2+]c signals into a final metabolic response, we stimulated hepatocytes with high vasopressin doses that generate a sustained increase in [Ca2+]c. This elicited a synchronous, single spike of [Ca2+]m and consequent NAD(P)H formation, which could be related to changes in the activity state of pyruvate dehydrogenase (PDH) measured in parallel. The vasopressin-induced [Ca2+]m spike evoked a transient increase in NAD(P)H that persisted longer than the [Ca2+]m increase. In contrast, PDH activity increased biphasically, with an initial rapid phase accompanying the rise in [Ca2+]m, followed by a sustained secondary activation phase associated with a decline in cellular ATP. The decline of NAD(P)H in the face of elevated PDH activity occurred as a result of respiratory chain activation, which was also manifest in a calcium-dependent increase in the membrane potential and pH gradient components of the proton motive force (PMF). This is the first direct demonstration that Ca2+-mobilizing hormones increase the PMF in intact cells. Thus, Ca2+ plays an important role in signal transduction from cytosol to mitochondria, with a single [Ca2+]m spike evoking a complex series of changes to activate mitochondrial oxidative metabolism.  相似文献   

17.
1. Studies on the kinetics of pyruvate transport into mitochondria by an 'inhibitor-stop' technique were hampered by the decarboxylation of pyruvate by mitochondria even in the presence of rotenone. Decarboxylation was minimal at 6 degrees C. At this temperature the Km for pyruvate was 0.15 mM and Vmax. was 0.54nmol/min per mg of protein; alpha-cyano-4-hydroxycinnamate was found to be a non-competitive inhibitor, Ki 6.3 muM, and phenyl-pyruvate a competitive inhibitor, Ki 1.8 mM. 2. At 100 muM concentration, alpha-cyano-4-hydroxycinnamate rapidly and almost totally inhibited O2 uptake by rat heart mitochondria oxidizing pyruvate. Inhibition could be detected at concentrations of inhibitor as low as 1 muM although inhibition took time to develop at this concentration. Inhibition could be reversed by diluting out the inhibitor. 3. Various analogues of alpha-cyano-4-hydroxycinnamate were tested on rat liver and heart mitochondria. The important structural features appeared to be the alpha-cyanopropenoate group and the hydrophobic aromatic side chain. Alpha-Cyanocinnamate, alpha-cyano-5-phenyl-2,4-pentadienoate and compound UK 5099 [alpha-cyano-beta-(2-phenylindol-3-yl)acrylate] were all more powerful inhibitors than alpha-cyano-4-hydroxycinnamate showing 50% inhibition of pyruvate-dependent O2 consumption by rat heart mitochondria at concentrations of 200, 200 and 50 nM respectively. 4. The specificity of the carrier for its substrate was studied by both influx and efflux experiments. Oxamate, 2-oxobutyrate, phenylpyruvate, 2-oxo-4-methyl-pentanoate, chloroacetate, dichloroacetate, difluoroacetate, 2-chloropropionate, 3-chloropropionate and 2,2-dichloropropionate all exchanged with pyruvate, whereas acetate, lactate and trichloroacetate did not. 5. Pyruvate entry into the mitochondria was shown to be accompanied by the transport of a proton (or by exchange with an OH-ion). This proton flux was inhibited by alpha-cyano-4-hydroxycinnamate and allowed measurements of pyruvate transport at higher temperatures to be made. The activation energy of mitochondrial pyruvate transport was found to be 113 kJ (27 kcal)/mol and by extrapolation the rate of transport of pyruvate at 37 degrees C to be 42 nmol/min per mg of protein. The possibility that pyruvate transport into mitochondria may be rate limiting and involved in the regulation of gluconegenesis is discussed. 6. The transport of various monocarboxylic acids into mitochondria was studied by monitoring proton influx. The transport of dichloroacetate, difluoroacetate and oxamate appeared to be largely dependent on the pyruvate carrier and could be inhibited by pyruvate-transport inhibitors. However, many other halogenated and 2-oxo acids which could exchange with pyruvate on the carrier entered freely even in the presence of inhibitor.  相似文献   

18.
The ATP content of pachytene spermatocytes and round spermatids, isolated from rat testes, was not maintained during incubation of the germ cells in the presence of glucose. Glucose was metabolized via glycolysis at a considerable rate, but the rate of oxidation of the resulting endogenous pyruvate in the mitochondria was too low to support fully ATP production. Exogenous pyruvate (0.25 mM) or exogenous l-lactate (3–6 mM), however, were effective energy substrates. The lactate dehydrogenase reaction in isolated germ cells favoured the rapid conversion of pyruvate to lactate, at the expense of reducing equivalents from mitochondrial NADH. Hence, to support ATP production by the germ cells via mitochondrial metabolism of endogenous pyruvate, a relatively high concentration of exogenous lactate may be essential. In the spermatogenic microenvironment in vivo, such high concentrations of lactate could result from the net production of lactate by Sertoli cells. The mitochondria of the isolated germ cells produced ATP probably at a close to maximal rate, and spermatogenesis therefore may be extremely sensitive to compounds which interfere with mitochondrial energy metabolism and respiratory control.  相似文献   

19.
Liver mitochondria isolated from glucagon-treated rats by using both mannitol- and sucrose-based media showed enhanced uncoupled succinate oxidation, pyruvate metabolism and citrulline synthesis. Mitochondria prepared in mannitol medium showed some stimulation of these parameters compared with those prepared in sucrose medium. This was accompanied by an increase in matrix volume of about 20%. Some [14C]mannitol became permanently associated with mitochondria during preparation. It is suggested that mannitol may enter mitochondria during their preparation and cause swelling. The presence of 4mM-phosphate in the sucrose isolation medium stimulated the same parameters as did glucagon treatment, and also caused an increase in matrix volume of about 20%. These results confirm the conclusion that the mitochondrial volume may be important in the regulation of mitochondrial metabolism. They contradict the conclusion of others [Siess (1983) Hoppe-Seyler's Z. Physiol. Chem. 364, 279-290, 835-838] that mannitol rather than sucrose should be used when studying hormonal effects on mitochondrial metabolism. Reasons for the discrepancies in the results between groups studying the effects of hormones on mitochondrial metabolism are discussed.  相似文献   

20.
The adaptation of oxidative energy transformation in mitochondria to the energy demand of cellular metabolism was investigated in experiments with isolated mitochondria and liver cells and by computer simulation in terms of a mathematical model. Separate draining of different energy pools allowed the determination of the relation between these pools and the elucidation of the importance of the connecting enzyme reactions to the regulation of the whole process. The following conclusions can be drawn from the results: 1. The intramitochondrial adenine nucleotide pool exhibits a homogeneous behaviour, and its changes are the signal for ATP synthesis. 2. The proton-motive force which is in near-equilibrium with the intramitochondrial phosphorylation potential is the immediate signal for the respiratory chain. 3. The intramitochondrial phosphorylation potential is transformed into the external one by a flux-dependent non-equilibrium reaction of the translocator. 4. The rate of respiration-linked ATP formation is regulated by more than one reaction step with varying control strength. 5. In both isolated mitochondria and hepatocytes an activation of respiration is provoked by a decrease in the mitochondrial energy state caused by cellular energy utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号