首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
HAP1 is a divalent cation-dependent endonuclease from human cells with specificity for apurinic/apyrimidinic (AP) sites in DNA. Extraction of the essential metal ion from purified HAP1 stabilized its binding to an oligonucleotide containing a single AP site, permitting AP site binding studies to be undertaken using gel retardation assays. Binding of HAP1 to such an oligonucleotide was dependent upon the presence of an AP site. Previous structural and modelling studies have suggested a role for Asn212 (Asn153 in exonuclease III, the bacterial homologue of HAP1) in substrate recognition. Substitution of alanine for Asn212 abolished the AP endonuclease activity of purified recombinant HAP1 protein. More conservative substitutions of aspartate or glutamine for Asn212 still led to a reduction in specific activity of at least 300-fold. Moreover, none of the three Asn212 substitution mutants of HAP1 possessed detectable AP site binding activity in vitro. This study indicates that chelation of the active site metal ion in HAP1 stabilizes the complex of the protein with AP sites and identifies an active site asparagine residue as an important component of AP site recognition by the HAP1 protein.  相似文献   

2.
MutY homolog (MUTYH) excises adenine opposite 8-oxoguanine (8-oxoG) in DNA, thus preventing occurrence of G:C to T:A transversion. In cell-free extract prepared from the thymocytes of wild type but not MUTYH-null mice, adenine opposite 8-oxoG in DNA was excised by MUTYH, however, the generated apurinic (AP) site opposite 8-oxoG mostly remained unincised. Recombinant mouse MUTYH (mMUTYH) efficiently excised adenine opposite 8-oxoG and prevented mouse AP endonuclease (mAPEX1) from incising the generated AP site. In contrast, an AP site opposite 8-oxoG created by uracil DNA glycosylase or tetrahydrofuran opposite 8-oxoG was efficiently incised by mAPEX1 in the presence of an excess amount of mMUTYH. Mutant mMUTYH with R361A or G365D substitution, excised adenine opposite 8-oxoG as efficiently as did wild-type mMUTYH, but failed to prevent mAPEX1 from incising the generated AP site. Wild-type mMUTYH bound duplex oligonucleotides containing A:8-oxoG pair with a lower apparent Kd than that of the mutants, and prevented OGG1 from excising 8-oxoG opposite adenine or the generated AP site. The G365D mutant failed to prevent OGG1 from excising 8-oxoG opposite the generated AP site, thus indicating that the protection of its own product by mMUTYH is an intrinsic function which depends on the C-terminal domain of mMUTYH.  相似文献   

3.
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ~5-fold and MichaelisMenten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ~ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ~ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ~ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.  相似文献   

4.
Mammalian AP endonuclease 1 is a pivotal enzyme of the base excision repair pathway acting on apurinic/apyrimidinic sites. Previous structural and biochemical studies showed that the conserved Asn-212 residue is important for the enzymatic activity of APE1. Here, we report a comprehensive pre-steady-state kinetic analysis of two APE1 mutants, each containing amino acid substitutions at position 212, to ascertain the role of Asn-212 in individual steps of the APE1 catalytic mechanism. We applied the stopped-flow technique for detection of conformational transitions in the mutant proteins and DNA substrates during the catalytic cycle, using fluorophores that are sensitive to the micro-environment. Our data indicate that Asn-212 substitution by Asp reduces the rate of the incision step by ∼550-fold, while Ala substitution results in ∼70,000-fold decrease. Analysis of the binding steps revealed that both mutants continued to rapidly and efficiently bind to abasic DNA containing the natural AP site or its tetrahydrofuran analogue (F). Moreover, transient kinetic analysis showed that N212A APE1 possessed a higher binding rate and a higher affinity for specific substrates compared to N212D APE1. Molecular dynamics (MD) simulation revealed a significant dislocation of the key catalytic residues of both mutant proteins relative to wild-type APE1. The analysis of the model structure of N212D APE1 provides evidence for alternate hydrogen bonding between Asn-212 and Asp-210 residues, whereas N212A possesses an extended active site pocket due to Asn removal. Taken together, these biochemical and MD simulation results indicate that Asn-212 is essential for abasic DNA incision, but is not crucial for effective recognition/binding.  相似文献   

5.
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.  相似文献   

6.
Dioxygenases catalyze a diverse range of chemical reactions that involve the incorporation of oxygen into a substrate and typically use a transition metal or organic cofactor for reaction. Bacterial (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) belongs to a class of oxygenases able to catalyze this energetically unfavorable reaction without any cofactor. In the quinaldine metabolic pathway, HOD breaks down its natural N-heteroaromatic substrate using a mechanism that is still incompletely understood. Experimental and computational approaches were combined to study the initial step of the catalytic cycle. We have investigated the role of the active site His-251/Asp-126 dyad, proposed to be involved in substrate hydroxyl group deprotonation, a critical requirement for subsequent oxygen reaction. The pH profiles obtained under steady-state conditions for the H251A and D126A variants show a strong pH effect on their kcat and kcat/Km constants, with a decrease in kcat/Km of 5500- and 9-fold at pH 10.5, respectively. Substrate deprotonation studies under transient-state conditions show that this step is not rate-limiting and yield a pKa value of ∼7.2 for WT HOD. A large solvent isotope effect was found, and the pKa value was shifted to ∼8.3 in D2O. Crystallographic and computational studies reveal that the mutations have a minor effect on substrate positioning. Computational work shows that both His-251 and Asp-126 are essential for the proton transfer driving force of the initial reaction. This multidisciplinary study offers unambiguous support to the view that substrate deprotonation, driven by the His/Asp dyad, is an essential requirement for its activation.  相似文献   

7.
The RAG endonuclease consists of RAG1, which contains the active site for DNA cleavage, and RAG2, an accessory factor whose interaction with RAG1 is critical for catalytic function. How RAG2 activates RAG1 is not understood. Here, we used biolayer interferometry and pulldown assays to identify regions of RAG1 necessary for interaction with RAG2 and to measure the RAG1-RAG2 binding affinity (KD ∼0.4 μm) (where RAG1 and RAG2 are recombination activating genes 1 or 2). Using the Hermes transposase as a guide, we constructed a 36-kDa “mini” RAG1 capable of interacting robustly with RAG2. Mini-RAG1 consists primarily of the catalytic center and the residues N-terminal to it, but it lacks a zinc finger region in RAG1 previously implicated in binding RAG2. The ability of Mini-RAG1 to interact with RAG2 depends on a predicted α-helix (amino acids 997–1008) near the RAG1 C terminus and a region of RAG1 from amino acids 479 to 559. Two adjacent acidic amino acids in this region (Asp-546 and Glu-547) are important for both the RAG1-RAG2 interaction and recombination activity, with Asp-546 of particular importance. Structural modeling of Mini-RAG1 suggests that Asp-546/Glu-547 lie near the predicted 997-1008 α-helix and components of the active site, raising the possibility that RAG2 binding alters the structure of the RAG1 active site. Quantitative Western blotting allowed us to estimate that mouse thymocytes contain on average ∼1,800 monomers of RAG1 and ∼15,000 molecules of RAG2, implying that nuclear concentrations of RAG1 and RAG2 are below the KD value for their interaction, which could help limit off-target RAG activity.  相似文献   

8.
A study was made of the interaction of 8-oxoguanine-DNA glycosylases of Escherichia coli (Fpg) and human (OGG1), as well as apurinic/apyrimidinic endonucleases of yeast (Apn1) and E. coli (Nfo), with oligodeoxyribonucleotides containing 8-oxoguaine (oxoG) and tetrahydrofuran (F, a stable analog of an apurinic site) separated by various numbers of nucleotides. Inhibitor analysis showed that the affinity of Fgp for single-stranded DNA ligands is virtually independent of the relative positions of oxoG and F. K M and k cat were determined for all the four enzymes and all double-stranded substrates studied. The effect of the second lesion strongly depended both on the relative position of the lesion and the enzyme of interest. The highest drop in the affinity of Fpg and OGG1 for the substrate (1.6-to 148-fold) and in the reaction rate (4.8-to 58-fold) was recorded for the oligonucleotides in which F was immediately 3′ or 5′ of oxoG. Introduction of the second lesion barely affected K M for nucleases Apn1 and Nfo. The reaction rate was five-to tenfold lower for the substrates containing two adjacent lesions. For all enzymes studied, an increase in the distance between two lesions in double-stranded DNA decreased their contribution to K M and k cat.  相似文献   

9.
A recombinant human AP endonuclease, HAP1, was constructed and characterized with respect to its ability to recognize and act upon a model double-stranded 39-mer oligodeoxyribonucleotide substrate containing a strand break site with 3'-phosphoglycolate and 5'-phosphate end-group chemistries. This oligodeoxyribonucleotide substrate exactly duplicates the chemistry and configuration of a major DNA lesion produced by ionizing radiation. HAP1 was found to recognize the strand break, and catalyze the release of the 3'-phosphoglycolate as free phosphoglycolic acid. The enzyme had a Vmax of 0.1 fmole/min/pg of HAP1 protein, and a Km of 0.05 microM for the 3'-phosphoglycolate strand break lesion. The mechanism of catalysis was hydrolysis of the phosphate ester bond between the 3'-phosphoglycolate moiety and the 3'-carbon of the adjacent dGMP moiety within the oligonucleotide. The resulting DNA contained a 3'-hydroxyl which supported nucleotide incorporation by E. coli DNA polymerase I large fragment. AP endonucleolytic activity of HAP1 was examined using an analogous double-stranded 39-mer oligodeoxyribonucleotide substrate, in which the strand break site was replaced by an apyrimidinic site. The Vmax and Km for the AP endonuclease reaction were 68 fmole/min/pg of HAP1 protein and 0.23 microM, respectively.  相似文献   

10.
Our genomic DNA is endlessly exposed to a wide variety of exogenous and endogenous DNA-damaging agents. One of the most abundant DNA lesions is an apurinic/apyrimidinic (AP) site, which in vivo, can form spontaneously or through various cellular pathways, including the repair activity of DNA glycosylase enzymes (Wilson & Barsky, 2001). Persistence of these AP sites is both highly mutagenic and cytotoxic to the cell (Loeb & Preston, 1986). AP endonuclease 1 (APE1), an Mg2+ dependent enzyme, is the major human endonuclease responsible for incising the DNA backbone at AP sites. Repair to canonical duplex DNA is then completed by DNA polymerase and DNA ligase. Recently, APE1, in conjunction with delivery of DNA-damaging agents, has become a target for chemotherapeutic research with the aim to inhibit APE1 activity (Fishel & Kelley, 2007). Therefore, an understanding of APE1 activity and its molecular mechanism is essential. In vitro, the authentic AP site is highly unstable and can undergo β-elimination, leading to a strand break (Strauss, Beard, Patterson & Wilson, 1997). Due to the fragility of the AP site, stable AP site analogs, such as the reduced AP site or tetrahydrofuran (THF) site, are typically used to study APE1 (Maher & Bloom, 2007; Strauss, Beard, Patterson & Wilson, 1997). In this work, we have performed the first comprehensive kinetic study of APE1 acting on the authentic AP site as well the reduced AP site and THF AP site analog. Transient-state kinetic experiments reveal that the strand incision chemistry step is fast, upwards of ~700?s?1 for all substrates, making APE1 one of the fastest DNA repair enzymes. Steady-state kinetic experiments reveal for each substrate, a slow, post chemistry step limits the steady-state rate. The steady-state rate for APE1 acting on authentic AP and AP-Red substrates is highly dependent on Mg2+ concentration, while the steady-state rate for THF site was not dependent on Mg2+ concentration. This comprehensive kinetic analysis reveal differences and similarities in the way APE1 processes the authentic AP site compared to AP site analogs. Furthermore, these differences require consideration when choosing AP site analogs to study APE1.  相似文献   

11.
Type A botulinum neurotoxin is one of the most lethal of the seven serotypes and is increasingly used as a therapeutic agent in neuromuscular dysfunctions. Its toxic function is related to zinc-endopeptidase activity of the N-terminal light chain (LC) on synaptosome-associated protein-25 kDa (SNAP-25) of the SNARE complex. To understand the determinants of substrate specificity and assist the development of strategies for effective inhibitors, we used site-directed mutagenesis to investigate the effects of 13 polar residues of the LC on substrate binding and catalysis. Selection of the residues for mutation was based on a computational analysis of the three-dimensional structure of the LC modeled with a 17-residue substrate fragment of SNAP-25. Steady-state kinetic parameters for proteolysis of the substrate fragment were determined for a set of 16 single mutants. Of the mutated residues non-conserved among the serotypes, replacement of Arg-230 and Asp-369 by polar or apolar residues resulted in drastic lowering of the catalytic rate constant (k cat), but had less effect on substrate affinity (K m). Substitution of Arg-230 with Lys decreased the catalytic efficiency (k cat/K m) by 50-fold, whereas replacement by Leu yielded an inactive protein. Removal of the electrostatic charge at Asp-369 by mutation to Asn resulted in 140-fold decrease in k cat/K m. Replacement of other variable residues surrounding the catalytic cleft (Glu-54, Glu-63, Asn-66, Asp-130, Asn-161, Glu-163, Glu-170, Glu-256), had only marginal effect on decreasing the catalytic efficiency, but unexpectedly the substitution of Lys-165 with Leu resulted in fourfold increase in k cat/K m. For comparison purposes, two conserved residues Arg-362 and Tyr-365 were investigated with substitutions of Leu and Phe, respectively, and their catalytic efficiency decreased 140- and 10-fold, respectively, whereas substitution of the tyrosine ring with Asn abolished activity. The altered catalytic efficiencies of the mutants were not due to any significant changes in secondary or tertiary structures, or in zinc content and thermal stability. We suggest that, despite the large minimal substrate size for catalysis, only a few non-conserved residues surrounding the active site are important to render the LC competent for catalysis or provide conformational selection of the substrate.  相似文献   

12.
4-Hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate (HMG/CHA) aldolase from Pseudomonas putida F1 catalyzes the last step of the bacterial protocatechuate 4,5-cleavage pathway. The preferred substrates of the enzyme are 2-keto-4-hydroxy acids with a 4-carboxylate substitution. The enzyme also exhibits oxaloacetate decarboxylation and pyruvate α-proton exchange activity. Sodium oxalate is a competitive inhibitor of the aldolase reaction. The pH dependence of kcat/Km and kcat for the enzyme is consistent with a single deprotonation with pKa values of 8.0 ± 0.1 and 7.0 ± 0.1 for free enzyme and enzyme substrate complex, respectively. The 1.8 Å x-ray structure shows a four-layered α-β-β-α sandwich structure with the active site at the interface of two adjacent subunits of a hexamer; this fold resembles the RNase E inhibitor, RraA, but is novel for an aldolase. The catalytic site contains a magnesium ion ligated by Asp-124 as well as three water molecules bound by Asp-102 and Glu-199′. A pyruvate molecule binds the magnesium ion through both carboxylate and keto oxygen atoms, completing the octahedral geometry. The carbonyl oxygen also forms hydrogen bonds with the guanadinium group of Arg-123, which site-directed mutagenesis confirms is essential for catalysis. A mechanism for HMG/CHA aldolase is proposed on the basis of the structure, kinetics, and previously established features of other aldolase mechanisms.  相似文献   

13.
AP endonuclease cleaves the phosphodiester bond 5′- to the AP (apurinic or apyrimidinic) sites and is one of the major enzymes involved in base excision repair. So far, the properties of several archaeal AP endonuclease homologues have been characterized in vitro, but little is known about their functions in vivo. Herein, we report on the biochemical and genetic analysis of two AP endonucleases, SisExoIII and SisEndoIV, from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. Both SisExoIII and SisEndoIV exhibit AP endonuclease activity, but neither of them has 3′–5′ exonuclease activity. SisExoIII and SisEndoIV have similar K M values on the substrate containing an AP site, but the latter cleaves the AP substrate at a dramatically higher catalytic rate than the former. Unlike other AP endonucleases identified in archaea, SisExoIII and SisEndoIV do not exhibit any cleavage activity on DNA having oxidative damage (8-oxo-dG) or uracil. Genetic analysis revealed that neither gene is essential for cell viability, and the growth of ?SiRe_2666 (endoIV), ?SiRe_0100 (exoIII), and ?SiRe_0100?SiRe_2666 is not affected under normal growth conditions. However, ?SiRe_2666 exhibits higher sensitivity to the alkylating agent methyl methanesulfonate (MMS) than ?SiRe_0100. Over-expression of SiRe_0100 can partially complement the sensitivity of ?SiRe_2666 to MMS, suggesting a backup role of SisExoIII in AP site processing in vivo. Intriguingly, over-expression of SisEndoIV renders the strain more sensitive to MMS than the control. Taken together, we conclude that SisEndoIV, but not SisExoIII, is the main AP endonuclease that participates directly in base excision repair in S. islandicus.  相似文献   

14.
Human AP endonuclease 1 (APE1, REF1) functions within the base excision repair pathway by catalyzing the hydrolysis of the phosphodiester bond 5 ' to a baseless sugar (apurinic or apyrimidinic site). The AP endonuclease activity of this enzyme and two active site mutants were characterized using equilibrium binding and pre-steady-state kinetic techniques. Wild-type APE1 is a remarkably potent endonuclease and highly efficient enzyme. Incision 5 ' to AP sites is so fast that a maximal single-turnover rate could not be measured using rapid mixing/quench techniques and is at least 850 s(-1). The entire catalytic cycle is limited by a slow step that follows chemistry and generates a steady-state incision rate of about 2 s(-1). Site-directed mutation of His-309 to Asn and Asp-210 to Ala reduced the single turnover rate of incision 5 ' to AP sites by at least 5 orders of magnitude such that chemistry (or a step following DNA binding and preceding chemistry) and not a step following chemistry became rate-limiting. Our results suggest that the efficiency with which APE1 can process an AP site in vivo is limited by the rate at which it diffuses to the site and that a slow step after chemistry may prevent APE1 from leaving the site of damage before the next enzyme arrives to continue the repair process.  相似文献   

15.
Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'  5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM = 134 and 7.3 μM−1·min−1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'  5' exonuclease activities (kcat/KM = 314 and 34 μM−1·min−1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp–/– mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.  相似文献   

16.
A comparison of the primary structures among psychrophilic, mesophilic, and thermophilic subtilases revealed that the turn between the β8 and β9 strands (β8-β9 turn, BPN′ numbering) of psychrophilic subtilases are more flexible than those of their mesophilic and thermophilic counterparts. To investigate the relationship between structure of this turn and enzyme activity as well as thermostability of mesophilic subtilisin Carlsberg (sC), we analyzed 6 mutants of sC with a single, double, or triple Gly or Ala substitutions for Pro210Thr211Asn212 at the β8-β9 turn. Among the single Gly substitutions, the P210G substitution most significantly (1.5-fold) increased the specific activity on N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (AAPF) substrate and 12-fold decreased the thermostability. All mutants tested showed the increased kcat for the AAPF substrate and reduced thermostability compared with the wild-type sC. The kcat values of the P210G, P210G/T211G, and P210G/T211G/N212G mutants were 1.5-, 1.7-, and 1.8-fold higher than that of the wild-type sC. There were significant positive correlations between kcat and thermal inactivation rates as well as kcat and Km of the wild-type and mutants. These results demonstrate that the structure of β8-β9 turn, despite its distance from the active site, has significant effects on the catalytic rate and thermostability of sC through a global network of intramolecular interactions and suggest that the lack of flexibility of this turn stabilizes the wild-type sC against thermal inactivation in compensation for some loss of catalytic activity.  相似文献   

17.
Caspases are intracellular cysteine-class proteases with aspartate specificity that is critical for driving processes as diverse as the innate immune response and apoptosis, exemplified by caspase-1 and caspase-3, respectively. Interestingly, caspase-1 cleaves far fewer cellular substrates than caspase-3 and also shows strong positive cooperativity between the two active sites of the homodimer, unlike caspase-3. Biophysical and kinetic studies here present a molecular basis for this difference. Analytical ultracentrifugation experiments show that mature caspase-1 exists predominantly as a monomer under physiological concentrations that undergoes dimerization in the presence of substrate; specifically, substrate binding shifts the KD for dimerization by 20-fold. We have created a hemi-active site-labeled dimer of caspase-1, where one site is blocked with the covalent active site inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. This hemi-labeled enzyme is about 9-fold more active than the apo-dimer of caspase-1. These studies suggest that substrate not only drives dimerization but also, once bound to one site in the dimer, promotes an active conformation in the other monomer. Steady-state kinetic analysis and modeling independently support this model, where binding of one substrate molecule not only increases substrate binding in preformed dimers but also drives the formation of heterodimers. Thus, the cooperativity in caspase-1 is driven both by substrate-induced dimerization as well as substrate-induced activation. Substrate-induced dimerization and activation seen in caspase-1 and not in caspase-3 may reflect their biological roles. Whereas caspase-1 cleaves a dramatically smaller number of cellular substrates that need to be concentrated near inflammasomes, caspase-3 is a constitutively active dimer that cleaves many more substrates located diffusely throughout the cell.  相似文献   

18.
Rhodanese is a component of the mitochondrial H2S oxidation pathway. Rhodanese catalyzes the transfer of sulfane sulfur from glutathione persulfide (GSSH) to sulfite generating thiosulfate and from thiosulfate to cyanide generating thiocyanate. Two polymorphic variations have been identified in the rhodanese coding sequence in the French Caucasian population. The first, 306A→C, has an allelic frequency of 1% and results in an E102D substitution in the encoded protein. The second polymorphism, 853C→G, has an allelic frequency of 5% and leads to a P285A substitution. In this study, we have examined differences in the stability between wild-type rhodanese and the E102D and P285A variants and in the kinetics of the sulfur transfer reactions. The Asp-102 and Ala-285 variants are more stable than wild-type rhodanese and exhibit kcat/Km,CN values that are 17- and 1.6-fold higher, respectively. All three rhodanese forms preferentially catalyze sulfur transfer from GSSH to sulfite, generating thiosulfate and glutathione. The kcat/Km,sulfite values for the variants in the sulfur transfer reaction from GSSH to sulfite were 1.6- (Asp-102) and 4-fold (Ala-285) lower than for wild-type rhodanese, whereas the kcat/Km,GSSH values were similar for all three enzymes. Thiosulfate-dependent H2S production in murine liver lysate is low, consistent with a role for rhodanese in sulfide oxidation. Our studies show that polymorphic variations that are distant from the active site differentially modulate the sulfurtransferase activity of human rhodanese to cyanide versus sulfite and might be important in differences in susceptibility to diseases where rhodanese dysfunction has been implicated, e.g. inflammatory bowel diseases.  相似文献   

19.
The benzetheno exocyclic adduct of the cytosine (C) base (pBQ-C) is a product of reaction between DNA and a stable metabolite of the human carcinogen benzene, p-benzoquinone (pBQ). We reported previously that the pBQ-C-containing duplex is a substrate for the human AP endonuclease (APE1), an enzyme that cleaves an apurinic/apyrimidinic (AP) site from double stranded DNA. In this work, using molecular dynamics simulation (MD), we provided a structural explanation for the recognition of the pBQ-C adduct by APE1. Molecular modeling of the DNA duplex containing pBQ-C revealed significant displacement of this adduct toward the major groove with pronounced kinking of the DNA at the lesion site, which could serve as a structural element recognized by the APE1 enzyme. Using 3 ns MD it was shown that the position of the pBQ-C adduct is stabilized by two hydrogen bonds formed between the adduct and the active site amino acids Asp 189 and Ala 175. The pBQ-C/APE1 complex, generated by MD, has a similar hydrogen bond network between target phosphodiester bond at the pBQ-C site and key amino acids at the active site, as in the crystallographically determined APE1 complexed with an AP site-containing DNA duplex. The position of the adduct at the enzyme active site, together with the hydrogen bond network, suggests a similar reaction mechanism for phosphodiester bond cleavage of oligonucleotide containing pBQ-C as reported for the AP site.  相似文献   

20.
Despite the progress in understanding the base excision repair (BER) pathway it is still unclear why known mutants deficient in DNA glycosylases that remove oxidised bases are not sensitive to oxidising agents. One of the back-up repair pathways for oxidative DNA damage is the nucleotide incision repair (NIR) pathway initiated by two homologous AP endonucleases: the Nfo protein from Escherichia coli and Apn1 protein from Saccharomyces cerevisiae. These endonucleases nick oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to repair of the remaining 5′-dangling nucleotide. NIR provides an advantage compared to DNA glycosylase-mediated BER, because AP sites, very toxic DNA glycosylase products, do not form. Here, for the first time, we have characterised the substrate specificity of the Apn1 protein towards 5,6-dihydropyrimidine, 5-hydroxy-2′-deoxyuridine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine deoxynucleotide. Detailed kinetic comparisons of Nfo, Apn1 and various DNA glycosylases using different DNA substrates were made. The apparent Km and kcat/Km values of the reactions suggest that in vitro DNA glycosylase/AP lyase is somewhat more efficient than the AP endonuclease. However, in vivo, using cell-free extracts from paraquat-induced E.coli and from S.cerevisiae, we show that NIR is one of the major pathways for repair of oxidative DNA base damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号