首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

2.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

3.
Membrane potential has a major influence on stimulus-secretion coupling in various excitable cells. The role of membrane potential in the regulation of parathyroid hormone secretion is not known. High K+-induced depolarization increases secretion from parathyroid cells. The paradox is that increased extracellular Ca2+, which inhibits secretion, has also been postulated to have a depolarizing effect. In this study, human parathyroid cells from parathyroid adenomas were used in patch clamp studies of K+ channels and membrane potential. Detailed characterization revealed two K+ channels that were strictly dependent of intracellular Ca2+ concentration. At high extracellular Ca2+, a large K+ current was seen, and the cells were hyperpolarized (-50.4 +/- 13.4 mV), whereas lowering of extracellular Ca2+ resulted in a dramatic decrease in K+ current and depolarization of the cells (-0.1 +/- 8.8 mV, p < 0.001). Changes in extracellular Ca2+ did not alter K+ currents when intracellular Ca2+ was clamped, indicating that K+ channels are activated by intracellular Ca2+. The results were concordant in cell-attached, perforated patch, whole-cell and excised membrane patch configurations. These results suggest that [Ca2+]o regulates membrane potential of human parathyroid cells via Ca2+-activated K+ channels and that the membrane potential may be of greater importance for the stimulus-secretion coupling than recognized previously.  相似文献   

4.
The effects of quinine and tetraethylammonium (TEA) on single-channel K+ currents recorded from excised membrane patches of the insulin-secreting cell line RINm5F were investigated. When 100 microM quinine was applied to the external membrane surface K+ current flow through inward rectifier channels was abolished, while a separate voltage-activated high-conductance K+ channel was not significantly affected. On the other hand, 2 mM TEA abolished current flow through voltage-activated high-conductance K+ channels without influencing the inward rectifier K+ channel. Quinine is therefore not a specific inhibitor of Ca2+-activated K+ channels, but instead a good blocker of the Ca2+-independent K+ inward rectifier channel whereas TEA specifically inhibits the high-conductance voltage-activated K+ channel which is also Ca2+-activated.  相似文献   

5.
Norepinephrine (NE) is one of the major neurotransmitters that determine melatonin production in the pineal gland. Although a substantial amount of Ca2+ influx is triggered by NE, the Ca2+ entry pathway and its physiological relevance have not been elucidated adequately. Herein we report that the Ca2+ influx triggered by NE significantly regulates the protein level of serotonin N-acetyltransferase, or arylalkylamine N-acetyltransferase (AANAT), a critical enzyme in melatonin production, and is responsible for maintaining the Ca2+ response after repetitive stimulation. Ca2+ entry evoked by NE was dependent on PLC activation. NE evoked a substantial amount of Ca2+ entry even after cells were treated with 1-oleoyl-2-acetyl-sn-glycerol (OAG), an analog of diacylglycerol. To the contrary, further OAG treatment after cells had been exposed to OAG did not evoke additional Ca2+ entry. Moreover, NE failed to induce further Ca2+ entry after the development of Ca2+ entry induced by thapsigargin (Tg), suggesting that the pathway of Ca2+ entry induced by NE might be identical to that of Tg. Interestingly, Ca2+ entry evoked by NE or Tg induced membrane hyperpolarization that was reversed by iberiotoxin (IBTX), a specific inhibitor of large-conductance Ca2+-activated K+ (BK) channels. Moreover, IBTX-sensitive BK current was observed during application of NE, suggesting that activation of the BK channels was responsible for the hyperpolarization. Furthermore, the activation of BK channels triggered by NE contributed to regulation of the protein level of AANAT. Collectively, these results suggest that NE triggers Ca2+ entry coupled to BK channels and that NE-induced Ca2+ entry is important in the regulation of AANAT. serotonin N-acetyltransferase; pineal gland  相似文献   

6.
Role of Ca2+-activated K+ channels in human erythrocyte apoptosis   总被引:10,自引:0,他引:10  
Exposure of erythrocytes to the Ca2+ ionophore ionomycin has recently been shown to induce cell shrinkage, cell membrane blebbing, and breakdown of phosphatidylserine asymmetry, all features typical of apoptosis of nucleated cells. Although breakdown of phosphatidylserine asymmetry is thought to result from activation of a Ca2+-sensitive scramblase, the mechanism and role of cell shrinkage have not been explored. The present study was performed to test whether ionomycin-induced activation of Ca2+-sensitive Gardos K+ channels and subsequent cell shrinkage participate in ionomycin-induced breakdown of phosphatidylserine asymmetry of human erythrocytes. According to on-cell patch-clamp experiments, ionomycin (1 µM) induces activation of inwardly rectifying K+-selective channels in the erythrocyte membrane. Fluorescence-activated cell sorter analysis reveals that ionomycin leads to a significant decrease of forward scatter, reflecting cell volume, an effect blunted by an increase of extracellular K+ concentration to 25 mM and exposure to the Gardos K+ channel blockers charybdotoxin (230 nM) and clotrimazole (5 µM). As reflected by annexin binding, breakdown of phosphatidylserine asymmetry is triggered by ionomycin, an effect again blunted, but not abolished, by an increase of extracellular K+ concentration and exposure to charybdotoxin (230 nM) and clotrimazole (5 µM). Similar to ionomycin, glucose depletion leads (within 55 h) to annexin binding of erythrocytes, an effect again partially reversed by an increase of extracellular K+ concentration and exposure to charybdotoxin. K-562 human erythroleukemia cells similarly respond to ionomycin with cell shrinkage and annexin binding, effects blunted by antisense, but not sense, oligonucleotides against the small-conductance Ca2+-activated K+ channel isoform hSK4 (KCNN4). The experiments disclose a novel functional role of Ca2+-sensitive K+ channels in erythrocytes, i.e., their participation in regulation of erythrocyte apoptosis. cell volume; charybdotoxin; osmolarity; phosphatidylserine; annexin  相似文献   

7.
The contribution of small-conductance (SKCa) and intermediate-conductance Ca2+-activated K+ (IKCa) channels to the generation of nitric oxide (NO) by Ca2+-mobilizing stimuli was investigated in human umbilical vein endothelial cells (HUVECs) by combining single-cell microfluorimetry with perforated patch-clamp recordings to monitor agonist-evoked NO synthesis, cytosolic Ca2+ transients, and membrane hyperpolarization in real time. ATP or histamine evoked reproducible elevations in NO synthesis and cytosolic Ca2+, as judged by 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) and fluo-3 fluorescence, respectively, that were tightly associated with membrane hyperpolarizations. Whereas evoked NO synthesis was unaffected by either tetraethylammonium (10 mmol/l) or BaCl2 (50 µmol/l) + ouabain (100 µmol/l), depleting intracellular Ca2+ stores by thapsigargin or removing external Ca2+ inhibited NO production, as did exposure to high (80 mmol/l) external KCl. Importantly, apamin and charybdotoxin (ChTx)/ triarylmethane (TRAM)-34, selective blockers SKCa and IKCa channels, respectively, abolished both stimulated NO synthesis and membrane hyperpolarization and decreased evoked Ca2+ transients. Apamin and TRAM-34 also inhibited an agonist-induced outwardly rectifying current characteristic of SKCa and IKCa channels. Under voltage-clamp control, we further observed that the magnitude of agonist-induced NO production varied directly with the degree of membrane hyperpolarization. Mechanistically, our data indicate that SKCa and IKCa channel-mediated hyperpolarization represents a critical early event in agonist-evoked NO production by regulating the influx of Ca2+ responsible for endothelial NO synthase activation. Moreover, it appears that the primary role of agonist-induced release of intracellular Ca2+ stores is to trigger the opening of both KCa channels along with Ca2+ entry channels at the plasma membrane. Finally, the observed inhibition of stimulated NO synthesis by apamin and ChTx/TRAM-34 demonstrates that SKCa and IKCa channels are essential for NO-mediated vasorelaxation. calcium; endothelium; hyperpolarization; small-conductance calcium-activated potassium channel; intermediate-conductance calcium-activated potassium channel channel  相似文献   

8.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

9.
We investigated whether nitric oxide (NO) directly activates the cloned alpha-subunit of large conductance Ca2+-activated K+ (Maxi-K) channels from rat brain (rSlo), expressed either in HEK293 cells or Xenopus oocytes. In inside-out patches, the application of S-nitroso-N-acetylpenicillamine (SNAP), a NO-releasing compound, reversibly activated the channel shifting the voltage dependent activation curve of the macroscopic Maxi-K current to the left by about 15 mV. Pretreatment of the patches with N-ethylmaleimide to alkylate free sulfhydryl groups did not prevent the effect of SNAP, suggesting that NO may directly interact with the channels. These results suggest that Maxi-K channels might be one of the physiological targets of NO in the brain.  相似文献   

10.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

11.
We used molecular biological and patch-clamp techniques to identify the Ca(2+)-activated K(+) channel genes in mouse parotid acinar cells. Two types of K(+) channels were activated by intracellular Ca(2+) with single-channel conductance values of 22 and 140 pS (in 135 mM external K(+)), consistent with the intermediate and maxi-K classes of Ca(2+)-activated K(+) channels, typified by the mIK1 (Kcnn4) and mSlo (Kcnma1) genes, respectively. The presence of mIK1 mRNA was established in acinar cells by in situ hybridization. The electrophysiological and pharmacological properties of heterologously expressed mIK1 channels matched those of the native current; thus the native, smaller conductance channel is likely derived from the mIK1 gene. We found that parotid acinar cells express a single, uncommon splice variant of the mSlo gene and that heterologously expressed channels of this Slo variant had a single-channel conductance indistinguishable from that of the native, large-conductance channel. However, the sensitivity of this expressed Slo variant to the scorpion toxin iberiotoxin was considerably different from that of the native current. RT-PCR analysis revealed the presence of two mSlo beta-subunits (Kcnmb1 and Kcnmb4) in parotid tissue. Comparison of the iberiotoxin sensitivity of the native current with that of parotid mSlo expressed with each beta-subunit in isolation and measurements of the iberiotoxin sensitivity of currents in cells from beta(1) knockout mice suggest that parotid acinar cells contain approximately equal numbers of homotetrameric channel proteins from the parotid variant of the Slo gene and heteromeric proteins composed of the parotid Slo variant in combination with the beta(4)-subunit.  相似文献   

12.
13.
Freshly dissociated cells from the stomach muscularis of the toad Bufo marinus have been employed to carry out a systematic set of electrophysiological studies on the membrane properties of smooth muscle. The existence of Ca2+-activated K+ channels became apparent during the first studies under current clamp. In subsequent studies under voltage clamp, a Ca2+-activated. TEA-sensitive outward current was evident, and it was more than an order of magnitude larger than any other current observed in the cells. The channel responsible, at least in part, for this large outward current has been identified on the basis of single-channel records, and some of its main characteristics have been studied. It is similar in many respects to the large-conductance, Ca2+-activated K+ channel seen in other preparations. This channel has now been found in a considerable diversity of smooth muscle types.  相似文献   

14.

Background  

Granulosa cells (GCs) represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa) of big conductance (BKCa), which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine) via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits), and 2. biophysical properties of BKCa channels.  相似文献   

15.
16.
17.
《Life sciences》1995,56(15):PL291-PL298
The aim of this study was to examine the effects of MCI-154, a new positive inotropic agent with vasodilating properties, on the Ca2+-activated K+ channel (KCa channel) of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 μM MCI-154 activated the KCa channel in intact cell-attached patch configurations. In excised inside-out patch configurations, application of 100μM MCI-154 to the cytosolic side activated the KCa channel directly, suggesting that the Ca2+ sensitivity of the KCa channel itself is modulated. Though extracellular application of 100 μM amrinone, a phosphodiesterase inhibitor, activated the KCa channel in the cell-attached patch configurations, application of 100 μm amrinone to the cytosolic side could not activate the KCa channel in inside-out patch configurations. These results indicate that different from amrinone, MCI-154 can modulate Ca2+ sensitivity of the KCa channel in vascular smooth muscle cells.  相似文献   

18.
Exposure of the inner surface of intact red cells or red cell ghosts to Ca2+ evokes unitary currents that can be measured in cell-attached and cell-free membrane patches. The currents are preferentially carried by K+ (PK/PNa 17) and show rectification. Increasing the Ca2+ concentration from 0 to 5 microM increases the probability of the open state of the channels parallel to the change of K+ permeability as observed in suspensions of red cell ghosts. Prolonged incubation of red cell ghosts in the absence of external K+ prevents the Ca2+ from increasing K+ permeability. Similarly, the probability to find Ca2+-activated unitary currents in membrane patches is drastically reduced. These observations suggest that the Ca2+-induced changes of K+ permeability observed in red cell suspensions are causally related to the appearance of the unitary K+ currents. Attempts to determine the number of K+ channels per cell were made by comparing fluxes measured in suspensions of red cells with the unitary currents in membrane patches as determined under comparable ionic conditions. At 100 mM KCl in the external medium, where no net movements of K+ occur, the time course of equilibration of 86Rb+ does not follow a single exponential. This indicates a heterogeneity of the response to Ca2+ of the cells in the population. The data are compatible with the assumption that 25% of the cells respond with Pk = 33.2 X 10(-14)cm3/s and 75% with Pk = 3.1 X 10(-14)cm3/s. At 100 mM external K+ the zero current permeability of a single channel is 6.1 X 10(-14)cm3/s (corresponding to a conductance of 22 pS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.  相似文献   

20.
Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine concentration value of 83.8 +/- 12.9 microM. The Hill coefficient was 1.2 +/- 0.3. The slope conductance of the current-voltage relationship was 320.1 +/- 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号