首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and pRSV-Raf-BXB, also inhibited pRSV-Raf-BXB-induced sIL-1Ra promoter activity, suggesting that inductions of sIL-1Ra promoter activity by LPS and Raf-1 actually occur by mutually antagonistic mechanisms. In support of this conclusion, sIL-1Ra promoter mapping studies indicated that LPS and Raf-1 responses localized to different regions of the sIL-1Ra promoter. Further studies demonstrated that mutual antagonism between the LPS and Raf-1 kinase pathways is not promoter specific, as the same phenomenon is observed in assays using a c-fos enhancer/thymidine kinase promoter/luciferase construct (pc-fos-TK81-luc). Additionally, mutual antagonism with regard to sIL-1Ra promoter activity also was observed between the LPS and MEK kinase pathways, indicating that mutual antagonism can occur in more than one MAPK activation pathway.  相似文献   

2.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

3.
4.
5.
Cell death and cell survival are central components of normal development and pathologic states. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine that regulates both cell growth and cell death. To better understand the molecular mechanisms that control cell death or survival, we investigated the role of TGF-beta1 in the apoptotic process by dominant-negative inhibition of both TGF-beta1 and mitogen-activated protein kinase (MAPK) signaling pathways. Murine macrophages (RAW 264.7) undergo apoptosis following serum deprivation, as determined by DNA laddering assay. However, apoptosis is prevented in serum-deprived macrophages by the presence of exogenous TGF-beta1. Using stably transfected RAW 264.7 cells with the kinase-deleted dominant-negative mutant of TbetaR-II (TbetaR-IIM) cDNA, we demonstrate that this protective effect by TGF-beta1 is completely abrogated. To determine the downstream signaling pathways, we examined TGF-beta1 effects on the MAPK pathway. We show that TGF-beta1 induces the extracellular signal-regulated kinase (ERK) activity in a time-dependent manner up to 4 h after stimulation. Furthermore, TGF-beta1 does not rescue serum deprivation-induced apoptosis in RAW 264.7 cells transfected with a dominant-negative mutant MAPK (ERK2) cDNA or in wild type RAW 264.7 cells in the presence of the MAPK kinase (MEK1) inhibitor. Taken together, our data demonstrate for the first time that TGF-beta1 is an inhibitor of apoptosis in cultured macrophages and may serve as a cell survival factor via TbetaR-II-mediated signaling and downstream intracellular MAPK signaling pathway.  相似文献   

6.
7.
8.
The mitogen-activated protein kinase (MAPK) signaling pathway is the primary regulatory module of various cellular processes such as cell proliferation, differentiation, and stress responses. This pathway converts external stimuli to cellular responses via three major kinases: mitogen-activated protein kinase (MAPK), mitogen-activated protein kinase kinase (MAPKK), and mitogen-activated protein kinase kinase kinase (MAPKKK). Ubiquitination is a post-translational modification of proteins with ubiquitin, which results in the formation of mono- or poly-ubiquitin chains of substrate proteins. Conversely, removal of the ubiquitin by deubiquitinating enzymes (DUBs) is known as deubiquitination. This review summarizes mechanisms of the MAPK signaling pathways (ERK1/2, ERK5, p38, and JNK1/2/3 signaling pathway) in cancers, and of E3 ligases and DUBs that target the MAPK signaling components such as Raf, MEK1/2, ERK1/2, MEKK2/3, MEKK1-4, TAK1, DLK1, MLK1-4, ASK1/2, and MKK3-7.  相似文献   

9.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

10.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

11.
Human endothelial nitric oxide synthase (eNOS) plays a crucial role in maintaining blood pressure homeostasis and vascular integrity. eNOS gene expression may be upregulated by a signaling pathway, including PI-3Kgamma--> Jak2--> MEK1 --> ERK1/2--> PP2A. It remains unclear whether other mitogen-activated protein kinase (MAPK) family members, such as JNK, p38 kinase, and ERK5/BMK1, also modulate eNOS gene expression. Our purpose, therefore, is to shed light on the effect of the p38 MAPK signaling pathway on the regulation of eNOS promoter activity. The results showed that a red fluorescent protein reporter gene vector containing the full length of the human eNOS promoter was first successfully constructed, expressing efficiently in ECV304 cells with the characteristics of real time observation. The wild-types of p38alpha, p38beta, p38gamma, and p38delta signal molecules all markedly downregulated promoter activity, which could be reversed by their negative mutants, including p38alpha (AF), p38beta (AF), p38gamma (AF), and p38delta (AF). Promoter activity was also significantly downregulated by MKK6b (E), an active mutant of an upstream kinase of p38 MAPK. The reduction in promoter activity by p38 MAPK could be blocked by treatment with a p38 MAPK specific inhibitor, SB203580. Moreover, the activation of endogenous p38 MAPK induced by lipopolysaccharide resulted in a prominent reduction in promoter activity. These findings strongly suggest that the activation of the p38 MAPK signaling pathway may be implicated in the downregulation of human eNOS promoter activity.  相似文献   

12.
13.
TGF-beta receptors (TbetaRs) are serine/threonine kinase receptors that bind to TGF-beta and propagate intracellular signaling through Smad proteins. TbetaRs are repressed in some human cancers and expressed at high levels in several fibrotic diseases. We demonstrated that epidermal growth factor (EGF) up-regulates type II TGF-beta receptor (TbetaRII) expression in human dermal fibroblasts. EGF-mediated induction of TbetaRII expression was inhibited by the treatment of fibroblasts with a specific p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, whereas MEK inhibitor PD98059 did not block the up-regulation of TbetaRII by EGF. EGF induced the TbetaRII promoter activity, and this induction was significantly blocked by SB203580, but not by PD98059. The overexpression of the dominant negative form of p38alpha or p38beta significantly reduced the induction of TbetaRII promoter activity by EGF. These results indicate that the EGF-mediated induction of TbetaRII expression involves the p38 MAPK signaling pathway. The EGF-mediated induction of TbetaRII expression may participate in a synergistic interplay between EGF and TGF-beta signaling pathway.  相似文献   

14.
15.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix synthesis leading to progressive glomerular fibrosis. The intracellular signaling mechanisms involved in this process remain incompletely understood. The p38 mitogen-activated protein kinase (MAPK) is a major stress signal transducing pathway that is rapidly activated by TGF-beta1 in mesangial cells. We have previously demonstrated MKK3 as the immediate upstream MAPK kinase required for selective activation of p38 MAPK isoforms, p38alpha and p38delta, and stimulation of pro-alpha1(I) collagen by TGF-beta1 in murine mesangial cells. In this study, we further sought to determine MAPK kinase 3 (MKK3)-dependent TGF-beta1 responses by gene expression profiling analysis utilizing mesangial cells isolated from Mkk3-/- mice compared with Mkk3+/+ controls. Interestingly, vascular endothelial growth factor (VEGF) was identified as a TGF-beta1-induced gene affected by deletion of Mkk3. VEGF is a well known endothelial mitogen, whose actions in nonendothelial cell types are still not well understood. We confirmed that TGF-beta1 increased VEGF mRNA and protein synthesis of VEGF164 and VEGF188 isoforms in wild-type mesangial cells. However, in the Mkk3-/- mesangial cells, both TGF-beta1-induced VEGF mRNA and VEGF164 protein expression were inhibited, whereas TGF-beta1-induced VEGF188 protein expression was unaffected. Furthermore, transfection of dominant negative mutants of p38alpha and p38delta resulted in marked inhibition of TGF-beta1-induced VEGF164 expression but not VEGF188, and treatment with recombinant mouse VEGF164 increased collagen and fibronectin mRNA expression in mesangial cells. Taken together, our findings suggest a critical role for the MKK3-p38alpha and p38delta MAPK pathway in mediating VEGF164 isoform-specific stimulation by TGF-beta1 in mesangial cells. Further, VEGF164 stimulates collagen and fibronectin expression in mesangial cells and thus in turn enhances TGF-beta1-induced extracellular matrix and may play an important role in progressive glomerular fibrosis.  相似文献   

16.
17.
To study the signaling pathway involved in the regulation of galectin-3 expression we used phorbol ester to stimulate macrophage differentiation of THP-1 cells. Treatment with phorbol 12-myristate 13-acetate (PMA) increased significantly the level of expression of galectin-3 in THP-1 cells. PMA-induced galectin-3 overexpression was blocked by: protein kinase C inhibitors staurosporine, calphostin C, and apigenin; tyrosine-specific protein kinase inhibitors genistein and tyrphostin A25; PD 98059, a selective inhibitor of mitogen-activated protein kinase (MAPK) kinase 1 (MEK1 or MKK1); and SB 203580, a specific inhibitor of p38 MAPK. Galectin-3 up-regulation was not affected by exposure to two inhibitors of cAMP-dependent protein kinase (PKA), H-89 and KT5720. Co-transfection of pPG3.5, a plasmid vector containing the rabbit galectin-3 promoter and the constructs pMCL-MKK1 N3 or pRC-RSV-MKK3Glu that constitutively express MKK1 and MKK3, raised the activity of galectin-3 promoter by 185% and 110%, respectively. Co-transfection with a Ha-Ras expression vector stimulated galectin-3 promoter activity approximately 10-fold. Expression of c-Jun or v-Jun raised the level of galectin-3 promoter activity more the three- and fourfold, respectively. Co-transfection of c-Jun and pPG3.5 5'-upstream deletion mutants resulted in a reduction of the galectin-3 promoter activity by 50% to 80%. Transfection of c-Jun, v-Jun or Ha-Ras increased significantly galectin-3 protein in THP-1 cells. These findings indicated that Ras/MEKK1/MKK1-dependent/AP-1 signal transduction pathway plays an important role in the expression of galectin-3 in PMA-stimulated macrophages. We further investigated the effect of modified lipoproteins on galectin-3 expression in macrophages. Murine resident peritoneal macrophages loaded with acetylated low-density lipoprotein (AcLDL) or oxidized LDL (OxLDL) showed increased galectin-3 protein and mRNA. These results showed that treatment of macrophages with PMA or modified lipoproteins results in galectin-3 overexpression. These findings may explain the enhanced expression of galectin-3 in atherosclerotic foam cells and suggest that Ras/MAPK signal transduction pathway is involved in controlling this gene.  相似文献   

18.
MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray structures of human MEK1 and MEK2, each determined as a ternary complex with MgATP and an inhibitor to a resolution of 2.4 A and 3.2 A, respectively. The structures reveal that MEK1 and MEK2 each have a unique inhibitor-binding pocket adjacent to the MgATP-binding site. The presence of the potent inhibitor induces several conformational changes in the unphosphorylated MEK1 and MEK2 enzymes that lock them into a closed but catalytically inactive species. Thus, the structures reported here reveal a novel, noncompetitive mechanism for protein kinase inhibition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号