首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation studies were performed on active-site residues of vanadium chloroperoxidase from the fungus Curvularia inaequalis, an enzyme which exhibits both haloperoxidase and phosphatase activity and is related to glucose-6-phosphatase. The effects of mutation to alanine on haloperoxidase activity were studied for the proposed catalytic residue His-404 and for residue Asp-292, which is located close to the vanadate cofactor. The mutants were strongly impaired in their ability to oxidize chloride but still oxidized bromide, although they inactivate during turnover. The effects on the optical absorption spectrum of vanadium chloroperoxidase indicate that mutant H404A has a reduced affinity for the cofactor, whereas this affinity is unchanged in mutant D292A. The effect on the phosphatase activity of the apoenzyme was investigated for six mutants of putative catalytic residues. Effects of mutation of His-496, Arg-490, Arg-360, Lys-353, and His-404 to alanine are in line with their proposed roles in nucleophilic attack, transition-state stabilization, and leaving-group protonation. Asp-292 is excluded as the group that protonates the leaving group. A model based on the mutagenesis studies is presented and may serve as a template for glucose-6-phosphatase and other related phosphatases. Hydrolysis of a phospho-histidine intermediate is the rate-determining step in the phosphatase activity of apochloroperoxidase, as shown by burst kinetics.  相似文献   

2.
Directed evolution was performed on vanadium chloroperoxidase from the fungus Curvularia inaequalis to increase its brominating activity at a mildly alkaline pH for industrial and synthetic applications and to further understand its mechanism. After successful expression of the enzyme in Escherichia coli, two rounds of screening and selection, saturation mutagenesis of a "hot spot," and rational recombination, a triple mutant (P395D/L241V/T343A) was obtained that showed a 100-fold increase in activity at pH 8 (k(cat) = 100 s(-1)). The increased K(m) values for Br(-) (3.1 mm) and H(2)O(2) (16 microm) are smaller than those found for vanadium bromoperoxidases that are reasonably active at this pH. In addition the brominating activity at pH 5 was increased by a factor of 6 (k(cat) = 575 s(-1)), and the chlorinating activity at pH 5 was increased by a factor of 2 (k(cat) = 36 s(-1)), yielding the "best" vanadium haloperoxidase known thus far. The mutations are in the first and second coordination sphere of the vanadate cofactor, and the catalytic effects suggest that fine tuning of residues Lys-353 and Phe-397, along with addition of negative charge or removal of positive charge near one of the vanadate oxygens, is very important. Lys-353 and Phe-397 were previously assigned to be essential in peroxide activation and halide binding. Analysis of the catalytic parameters of the mutant vanadium bromoperoxidase from the seaweed Ascophyllum nodosum also adds fuel to the discussion regarding factors governing the halide specificity of vanadium haloperoxidases. This study presents the first example of directed evolution of a vanadium enzyme.  相似文献   

3.
We have previously shown that vanadium bromoperoxidase from Ascophyllum nodosum mediates production of the (R)-enantiomer of methyl phenyl sulfoxide with 91% enantiomeric excess. Investigation of the intrinsic selectivity of vanadium bromoperoxidase reveals that the enzyme catalyzes the sulfoxidation of methyl phenyl sulfide in a purely enantioselective manner. The K(m) of the enzyme for methyl phenyl sulfide was determined to be approximately 3.5 mM in the presence of 25% methanol or tert-butanol. The selectivity of the sulfoxidation of methyl phenyl sulfide is optimal in the temperature range 25-30 degrees C and can be further optimized by increasing the enzyme concentration, yielding selectivities with up to 96% enantiomeric excess. Furthermore, we established for the first time that vanadium bromoperoxidase is functional at temperatures up to 70 degrees C. A detailed investigation of the sulfoxidation activity of this enzyme using (18)O-labeled hydrogen peroxide shows that vanadium bromoperoxidase mediates the direct transfer of the peroxide oxygen to the sulfide. A schematic model of the vanadium haloperoxidase sulfoxidation mechanism is presented.  相似文献   

4.
AIMS: The aim of this study was to investigate the influence of environmental and physiological factors on the susceptibility of Escherichia coli to the Curvularia haloperoxidase system. METHODS AND RESULTS: The Curvularia haloperoxidase system is a novel enzyme system that produces reactive oxygen species which have an antimicrobial effect. Escherichia coli MG1655 was exposed to the Curvularia haloperoxidase system under different temperatures and NaCl concentrations and after exposure to different stress factors. Temperature clearly affected enzymatic activity with increasing antibacterial effect at increasing temperature. The presence of NaCl interfered with the enzyme system and in the presence of 1% NaCl, no antibacterial effect could be observed at pH 7. Cells grown at pH 8.0 were in one experiment more resistant than cells grown at pH 6.5, whereas cells grown in the presence of 2% NaCl were more susceptible to the Curvularia haloperoxidase system. CONCLUSIONS: Environmental and physiological factors can affect the antibacterial activity of the Curvularia haloperoxidase system. SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrates a systematic approach in assessing the effect of environmental and physiological factors on microbial susceptibility to biocides. Such information is crucial for prediction of application as well as potential side-effects.  相似文献   

5.
A presumed antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of evaluating its potential as a sanitizing agent. In the presence of hydrogen peroxide, Curvularia haloperoxidase facilitates the oxidation of halides, such as chloride, bromide, and iodide, to antimicrobial compounds. The Curvularia haloperoxidase system caused several-log-unit reductions in counts of bacteria (Pseudomonas spp., Escherichia coli, Serratia marcescens, Aeromonas salmonicida, Shewanella putrefaciens, Staphylococcus epidermidis, and Listeria monocytogenes), yeasts (Candida sp. and Rhodotorula sp.), and filamentous fungi (Aspergillus niger, Aspergillus tubigensis, Aspergillus versicolor, Fusarium oxysporum, Penicillium chrysogenum, and Penicillium paxilli) cultured in suspension. Also, bacteria adhering to the surfaces of contact lenses were killed. The numbers of S. marcescens and S. epidermidis cells adhering to contact lenses were reduced from 4.0 and 4.9 log CFU to 1.2 and 2.7 log CFU, respectively, after treatment with the Curvularia haloperoxidase system. The killing effect of the Curvularia haloperoxidase system was rapid, and 10(6) CFU of E. coli cells/ml were eliminated within 10 min of treatment. Furthermore, the antimicrobial effect was short lived, causing no antibacterial effect against E. coli 10 min after the system was mixed. Bovine serum albumin (1%) and alginate (1%) inhibited the antimicrobial activity of the Curvularia haloperoxidase system, whereas glucose and Tween 20 did not affect its activity. In conclusion, the Curvularia haloperoxidase system is an effective sanitizing system and has the potential for a vast range of applications, for instance, for disinfection of contact lenses or medical devices.  相似文献   

6.
Vanadium haloperoxidases have been reported to mediate the oxidation of halides to hypohalous acid and the sulfoxidation of organic sulfides to the corresponding sulfoxides in the presence of hydrogen peroxide. However, traditional heme peroxidase substrates were reported not to be oxidized by vanadium haloperoxidases. Surprisingly, we have now found that the recombinant vanadium chloroperoxidase from the fungus Curvularia inaequalis catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a classical chromogenic heme peroxidase substrate. The enzyme mediates the oxidation of ABTS in the presence of hydrogen peroxide with a turnover frequency of 11 s(-1) at its pH optimum of 4.0. The Km of the recombinant enzyme for ABTS was observed to be approximately 35 microM at this pH value. In addition, the bleaching of an industrial sulfonated azo dye, Chicago Sky Blue 6B, catalyzed by the recombinant vanadium chloroperoxidase in the presence of hydrogen peroxide is reported.  相似文献   

7.
In this study, Aspergillus terreus was irradiated by a 7.3 mW He–Ne laser in the presence of crystal violet, toluidine blue O and hematoporphyrin as photosensitizers. Xylanases recovered from non-irradiated and irradiated fungi were purified and characterized. The maximum production of xylanase (42.2 U/ml) was obtained after 5 min of laser irradiation in the absence of the photosensitizer. The irradiation of the sensitized fungus diminished the production of xylanase. On purification using G-100, the specific activity of xylanase recovered from the irradiated fungus was 292 U/mg protein representing a 37-fold purification over the crude extract compared with 95.6 U/mg protein representing the 12.8-fold for the enzyme recovered from the non-irradiated fungus. The enzyme recovered from the irradiated fungus had lower molecular weight as compared with that recovered from the non-irradiated one. Characterization of the purified enzymes revealed that the enzyme recovered from the irradiated fungus was more thermostable and had a wider range of optimum reaction temperature (60–70°C) and pH (4.0–12.0), compared to the non-irradiated one.  相似文献   

8.
Vanadium haloperoxidases from brown algae of the Laminariaceae family   总被引:5,自引:0,他引:5  
Vanadium haloperoxidases were extracted, purified and characterized from three different species of Laminariaceae--Laminaria saccharina (Linné) Lamouroux, Laminaria hyperborea (Gunner) Foslie and Laminaria ochroleuca de la Pylaie. Two different forms of the vanadium haloperoxidases were purified from L. saccharina and L. hyperborea and one form from L. ochroleuca species. Reconstitution experiments in the presence of several metal ions showed that only vanadium(V) completely restored the enzymes activity. The stability of some enzymes in mixtures of buffer solution and several organic solvents such as acetone, ethanol, methanol and 1-propanol was noteworthy; for instance, after 30 days at least 40% of the initial activity for some isoforms remained in mixtures of 3:1 buffer solution/organic solvent. The enzymes were also moderately thermostable, keeping full activity up to 40 degrees C. Some preliminary steady-state kinetic studies were performed and apparent Michaelis-Menten kinetic parameters were determined for the substrates iodide and hydrogen peroxide. Histochemical studies were also performed in fresh tissue sections from stipe and blade of L. hyperborea and L. saccharina, showing that haloperoxidase activity was concentrated in the external cortex near the cuticle, although some activity was also observed in the inner cortical region.  相似文献   

9.
The vanadium haloperoxidase (V-HPO) enzyme, extracted from the brown alga Laminaria saccharina, is able to catalyze the formation of a black precipitate, using as precursor the amino acid l-dopa in the presence of hydrogen peroxide and iodide, in one-pot synthesis. The l-dopa oxidation is a multistep reaction with a crucial role played by the iodide in the enzyme catalyzed peroxidative production of dopachrome, a well known intermediate in the synthesis of melanin. Dopachrome is then converted to a synthetic form of melanin through a polymerization reaction. Factors, such as buffer composition and pH, influence significantly the reaction first steps, but further steps of melanin production are hardly influenced. The biosynthetic melanin produced through the combination V-HPO/I/H2O2, was characterized by several spectroscopic techniques (UV-vis and FT-IR) as well as XRD. Moreover, this biopolymer is light sensitive, decomposing into oligo- and monomeric units. Scanning electron microscopy (SEM) imaging showed different morphologies when compared with commercial available melanin. The biosynthetic production of melanin can have a wide range of applications from photosensitive cells to biomedicine with the advantage of being produced under eco-friendly and mild conditions.  相似文献   

10.
A short account on the identification in solution of diverse type of vanadium peroxocomplexes is offered. The methodology used is a combination of several techniques, i.e., multinuclear NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and theoretical calculation. The analysis has been carried out in aqueous alcoholic solutions, and in some case also in the presence of appropriate ligands, in order to model some of the natural conditions where vanadium-dependent haloperoxidase enzymes (VHPO) work. With the results obtained, it has been possible to shed light on important aspects of the catalytic cycle of VHPO. Furthermore, a number of synthetic aspects of the reactivity of the various vanadium peroxocomplexes is reviewed.  相似文献   

11.
Chloroperoxidase catalyzes the peroxidation of primary alcohols, specifically those that are allylic, propargylic, or benzylic. Aldehydes are the products. The reaction dislays appreciable activity throughout the entire pH range investigated, namely pH 3.0–7.0. This enzyme is the only haloperoxidase of four tested capable of carrying out the reaction. These results further establish chloroperoxidase as a unique haloperoxidase.  相似文献   

12.
The vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis is heterologously expressed to high levels in the yeast Saccharomyces cerevisiae. Characterization of the recombinant enzyme reveals that this behaves very similar to the native chloroperoxidase. Site-directed mutagenesis is performed on four highly conserved active site residues to examine their role in catalysis. When the vanadate-binding residue His(496) is changed into an alanine, the mutant enzyme loses the ability to bind vanadate covalently resulting in an inactive enzyme. The negative charges on the vanadate oxygens are compensated by hydrogen bonds with the residues Arg(360), Arg(490), and Lys(353). When these residues are changed into alanines the mutant enzymes lose the ability to effectively oxidize chloride but can still function as bromoperoxidases. A general mechanism for haloperoxidase catalysis is proposed that also correlates the kinetic properties of the mutants with the charge and the hydrogen-bonding network in the vanadate-binding site.  相似文献   

13.
A novel antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of elucidating its mechanism of antibacterial action. Escherichia coli strain MG1655 was stressed with sublethal concentrations of the enzyme system, causing a temporary arrest of growth. The expression of genes altered upon exposure to the Curvularia haloperoxidase system was analyzed by using DNA microarrays. Only a limited number of genes were involved in the response to the Curvularia haloperoxidase system. Among the induced genes were the ibpA and ibpB genes encoding small heat shock proteins, a gene cluster of six genes (b0301-b0306) of unknown function, and finally, cpxP, a member of the Cpx pathway. Knockout mutants were constructed with deletions in b0301-b0306, cpxP, and cpxARP, respectively. Only the mutant lacking cpxARP was significantly more sensitive to the enzyme system than was the wild type. Our results demonstrate that DNA microarray technology cannot be used as the only technique to investigate the mechanisms of action of new antimicrobial compounds. However, by combining DNA microarray analysis with the subsequent creation of knockout mutants, we were able to pinpoint one of the specific responses of E. coli--namely, the Cpx pathway, which is important for managing the stress response from the Curvularia haloperoxidase system.  相似文献   

14.
Epoxidation of alkenes by chloroperoxidase catalysis   总被引:1,自引:0,他引:1  
Chloroperoxidase from Caldariomyces fumago catalyzes the peroxidation of alkenes to epoxides. This enzyme is the only haloperoxidase of four tested capable of carrying out the reaction. These results further establish chloroperoxidase as a unique haloperoxidase, and adds this enzyme to the short list of other enzymes (e.g., cytochrome P-450) known to epoxidize alkenes.  相似文献   

15.
Alanine aminotransferase (EC 2.6.1.2) was obtained from the fungus Leptosphaeria michotii (West) Sacc, and enriched 714-fold by a 5-step purification procedure as a dimer of Mr 110000, associated with a polypeptide of Mr 25000. Its isoelectric point was 5.25. The enzyme was active from pH 3.5 to 9.5 with a maximum at pH 7.5. Its specific activity was 6000 nkat (mg protein)−1; the Km was 6.85 m M for L-alanine and 0.2 m M for 2-oxoglutarate. The enzyme did not show any detectable activity in the presence of L-aspartate, cysteine sulfinate, α-aminobutyrate or cyclic amino acids as substrates. It did not express alanine:glyoxylate aminotransferase activity. Alanine aminotransferase in L. michotii has previously been shown to have an activity rhythm in constant temperature and darkness. The enzyme level was quantified along the activity rhythm by enzyme-linked immunosorbent assay (ELISA), using a monospecific polyclonal antibody against the purified enzyme. The cyclic variations of alanine aminotransferase activity were correlated with cyclic variations in the enzyme level.  相似文献   

16.
Chalcone isomerase, an enzyme involved in the formation of flavonoid-derived compounds in plants, has been purified nearly 600-fold from cell suspension cultures of dwarf French bean (Phaseolus vulgaris L.). Chromatofocussing yielded a single form of the enzyme of apparent pI 5.0. This preparation was used to raise rabbit anti-(chalcone isomerase) serum. Changes in the rate of synthesis of chalcone isomerase have been investigated by indirect immunoprecipitation of enzyme labelled in vivo with [35S]methionine in elicitor-treated cultures of P. vulgaris. Elicitor, heat-released from cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose disease of bean, causes increased synthesis of the isomerase, with maximum synthetic rate occurring 11-12 h after exposure to elicitor. Immune blotting studies indicate that the elicitor-mediated increase in extractable activity of the isomerase is associated with increased appearance of immunodetactable isomerase protein of Mr 27 000. However, the maximum level of immunodetectable isomerase was attained approximately 6 h earlier than maximum extractable activity. Furthermore, a 2.8-fold increase in enzyme activity above basal levels at 12 h after elicitor-treatment was associated with a corresponding 5.8-fold increase in immunodetectable enzyme. It is concluded that elicitor induces the synthesis of both active and inactive chalcone isomerase of Mr 27 000, and that some activation of inactive enzyme occurs during the elicitor-mediated increase in isomerase activity. The presence of a pool of inactive chalcone isomerase in bean cell cultures has recently been suggested on the basis of density labelling experiments utilising 2H from 2H2O [Dixon et al. (1983) Planta (Berl.) 159, 561-569].  相似文献   

17.
A novel, simple and highly efficient process for purifying vanadium bromoperoxidase from Corallina officinalis is reported. The key innovation is adding 0.5 mM sodium orthovanadate to the crude cell extract followed by heating at 70°C for 2 h, by which a 5.4-fold purification with a 100% activity recovery was achieved. Combining the heat treatment with ammonium sulfate precipitation and DEAE-52 column chromatography, the overall yield was 84%, 3.8 times greater than the highest yield previously reported. Finally, a specific activity of 310 U/mg, a 27-fold purification of the crude enzyme solution was produced.  相似文献   

18.
A presumed antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of evaluating its potential as a sanitizing agent. In the presence of hydrogen peroxide, Curvularia haloperoxidase facilitates the oxidation of halides, such as chloride, bromide, and iodide, to antimicrobial compounds. The Curvularia haloperoxidase system caused several-log-unit reductions in counts of bacteria (Pseudomonas spp., Escherichia coli, Serratia marcescens, Aeromonas salmonicida, Shewanella putrefaciens, Staphylococcus epidermidis, and Listeria monocytogenes), yeasts (Candida sp. and Rhodotorula sp.), and filamentous fungi (Aspergillus niger, Aspergillus tubigensis, Aspergillus versicolor, Fusarium oxysporum, Penicillium chrysogenum, and Penicillium paxilli) cultured in suspension. Also, bacteria adhering to the surfaces of contact lenses were killed. The numbers of S. marcescens and S. epidermidis cells adhering to contact lenses were reduced from 4.0 and 4.9 log CFU to 1.2 and 2.7 log CFU, respectively, after treatment with the Curvularia haloperoxidase system. The killing effect of the Curvularia haloperoxidase system was rapid, and 106 CFU of E. coli cells/ml were eliminated within 10 min of treatment. Furthermore, the antimicrobial effect was short lived, causing no antibacterial effect against E. coli 10 min after the system was mixed. Bovine serum albumin (1%) and alginate (1%) inhibited the antimicrobial activity of the Curvularia haloperoxidase system, whereas glucose and Tween 20 did not affect its activity. In conclusion, the Curvularia haloperoxidase system is an effective sanitizing system and has the potential for a vast range of applications, for instance, for disinfection of contact lenses or medical devices.  相似文献   

19.
A nonheme bromoperoxidase has been purified to homogeneity from the red seaweed Corallina officinalis. Like the corresponding enzyme previously reported from C. pilulifera, this bromoperoxidase contains a significant amount of nonheme iron. However, it is vanadate ion and not iron that activates the enzyme, and maximal activity is achieved with stoichiometric vanadium incorporation. The absence of competition between vanadium and iron suggests that they occupy distinct binding sites in the protein. A correlation between vanadium content and catalytic activity indicates that less than 12 percent of the maximal activity of the enzyme can be derived from metals other than vanadium.  相似文献   

20.
A developmentally regulated carboxypeptidase was purified from hyphae of the dimorphic fungus Mucor racemosus. The enzyme, designated carboxypeptidase 3 (CP3), has been purified greater than 900-fold to homogeneity and characterized. The carboxypeptidase migrated as a single electrophoretic band in isoelectric focusing polyacrylamide gel electrophoresis (PAGE), with an isoelectric point of pH 4.4. The apparent molecular mass of the native enzyme was estimated by gel filtration to be 52 kDa. Sodium dodecyl sulfate (SDS)-PAGE under nonreducing conditions revealed the presence of a single polypeptide of 51 kDa. SDS-PAGE of CP3 reacted with 2-mercaptoethanol revealed the presence of two polypeptides of 31 and 18 kDa, indicating a dimer structure (alpha 1 beta 1) of the enzyme with disulfide-linked subunits. By using [1,3-3H]diisopropylfluorophosphate as an active-site labeling reagent, it was determined that the catalytic site resides on the small subunit of the carboxypeptidase. With N-carboben zoxy-L-phenylalanyl-L-leucine (N-CBZ-Phe-Leu) as the substrate, the Km, kcat, and Vmax values were 1.7 x 10(-4) M, 490 s-1, and 588 mumol of Leu released per min per mg of protein, respectively. CP3 was determined to be a serine protease, since its catalytic activity was blocked by the serine protease inhibitors diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, and 3,4-dichloroi Socoumarin (DCI). The enzyme was strongly inhibited by the mercurial compound p-chloromercuribenzoate. The carboxypeptidase readily hydrolyzed peptides with aliphatic or aromatic side chains, whereas most of the peptides which contained glycine in the penultimate position did not serve as substrates for the enzyme. Although CP3 activity was undetectable in Mucor yeast cells, antisera revealed the presence of the enzyme in the yeast form of the fungus. The partial amino acid sequence of the carboxypeptidase was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号