首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology, distribution and immunophenotype of microglia throughout the adult rat hypothalamo-neurohypophysial system was examined. Four macrophage-associated antibodies (OX-42, F4/80, ED1 and ED2) were used; the expression of major histocompatibility complex antigens was investigated by use of antibodies against OX-6, OX-17 (MHC class II) and OX-18 (MHC class I). Three distinct types of microglia were identified. The first was located in the magnocellular nuclei; these radially branched (ramified) microglia had round cell bodies and long branched processes, and were strongly immunoreactive only for OX-42. The second was located outside the blood-brain barrier in the median eminence, pituitary stalk and neurohypophysis often close to blood vessels; these compact microglia had irregular cell bodies and shorter processes, and were strongly labelled by OX-42 and F4/80, weakly labelled by OX-18, and generally unlabelled by ED1, ED2, OX-6 and OX-17. The third type was found in small numbers throughout the system at the surface of the neurvous tissue or around blood vessels; these perivascular microglia were elongated cells with no branching processes, and were strongly labelled by ED1, ED2, OX-18, OX-6, OX-17 and F4/80 antibodies but showed variable OX-42 immunoreactivity. Cells in a perivascular location were heterogeneous with respect to their immunophenotype. The presence in the normal adult rat hypothalamo-neurohypophysial system of MHC class-II molecules (OX-6 and OX-17) on a sub-set of perivascular microglia suggests that these cells are capable of presenting antigen to T lymphocytes. The microglia, which lie on either side of the blood-brain barrier, are well placed to facilitate interaction between the immune and neuroendocrine systems.  相似文献   

2.
Macrophages are widely distributed in lymphohaemopoietic and many other mammalian tissues, where they are mainly involved in host defence mechanisms, phagocytosis, wound repair, and secretion of growth factors. Increasing evidence suggests that secretory products of macrophages can influence adrenal gland functions. In the present study, we have used specific antibodies to ED1 (cytoplasmic antigen), ED2 (membrane antigen), ED8 (membrane antigen), and OX-6 (MHC class II/membrane antigen) as markers for macrophages to examine their distribution within the adult rat adrenal gland. ED2 and OX-6 recognize distinct subpopulations of adrenal gland macrophages, whereas macrophages immunoreactive (-ir) for ED1 and ED8 could not be detected. OX-6-ir macrophages were most numerous in the cortical reticularis and glomerulosa zones, while only few cells were found in the zona fasciculata and in the adrenal medulla. Macrophages immunoreactive for ED2 were restricted to the adrenal medulla. The majority of these macrophages were associated with vascular sinuses or chromaffin cells. By double-immunolabelling we found that most of ED2-ir medullary macrophages contain neurotrophin-4 (NT-4)-like ir. Attempts to clarify whether macrophages take up NT-4 from NT-4-ir chromaffin cells indicated that medullary macrophages are immunonegative for chromogranin A and neuropeptide Y, two major secretory products of chromaffin cells. In situ hybridizations and immunofluorescence showed expression of the neurotrophin receptor TrkA, but not TrkB in the adrenal medulla. In vitro studies indicated that NT-4, similar to nerve growth factor, can induce c-fos-ir in chromaffin cells. We conclude that chromaffin cells are putative targets for adrenal medullary NT-4, whose functions remain to be clarified.  相似文献   

3.
Summary The function of the metrial gland of the rat, and particularly of its characteristic population of granulated cells, remains unknown. However, several lines of evidence suggest that the granulated cells may derive from lymphocytes, and play a role in the immunology of pregnancy. In this study, antigen expression by granulated and other cell populations from the metrial glands of rats at Days 13 and 14 of pregnancy was studied by an indirect immunoperoxidase method. Acetone-fixed frozen sections, and cytocentrifuge preparations of collagenase-dispersed metrial gland tissue in which numbers of granulated cells had been increased by density-gradient centrifugation, were used. The primary antibodies used recognised, inter alia, B lymphocytes (MRC OX-3, MRC OX-6, MRC OX-12), T lymphocytes (MRC OX-8, W3/25, MRC OX-19), neutrophils (MRC OX-42) and cells of the monocyte/macrophage series (MRC OX-3, MRC OX-6, MRC OX-42, MRC OX43). The majority of the granulated cells, including smaller, immature forms, were unlabelled by any of these antibodies. Some lymphocytes, and varying numbers of larger, non-granulated cells, were labelled by OX-6, OX-12, W3/ 25, OX-42 and OX-43. In addition to lymphocytes, labelled cells included neutrophils (OX-42), endothelial cells (OX-43), and probably some macrophages (OX-6, OX-43). OX-12, which recognises the kappa chain of rat IgG, labelled some large cells which may have been stromal cells. These findings do not support the concept that the granulated cells are derived from lymphocytes.  相似文献   

4.
 The detailed distribution and heterogeneity of various immunocompetent cells were characterized in the normal adrenal gland of the rat, with special emphasis on major histocompatibility complex (MHC) class II-expressing cells and macrophages. All adrenals contained at least two different populations of cells reactive with the dendritic cell or the macrophage antibodies. These cells were clearly distinguished from adrenal parenchymal cells by their morphology and location. The majority of dendritic cells were immunoreactive for the MHC class II (Ia) antigen (MRC OX6) and/or the dendritic cell antibodies (MRC OX62), and negative for the macrophage antibodies (ED1, ED2, and/or MRC OX42), whereas the main population of macrophages was immunonegative for the former antibodies and positive for the latter. The OX62-positive cells and the OX42-labeled cells occurred exclusively throughout the medulla. The cellular density of dendritic cells in the adrenal cortex was significantly higher than that of macrophages. Double-immunoperoxidase staining for ED1 and OX6 revealed that positively stained cells could be classified into the following categories: ED1+OX6+, ED1+OX6, and ED1OX6+. More then 40% of OX6+ cells were immunoreactive for ED1 in the zona glomerulosa, while approximately 15%, 20%, and 30% of OX6+ cells were positive for ED1 in the zona fasciculata, zona reticularis and medulla, respectively. ED1+ED2 cells were more frequently detected in the zona glomerulosa than in other adrenal zones. Only a few ED1ED2+ cells were located in the zona glomerulosa, whereas a large number of them were found in the zona fasciculata. In the zona reticularis and medulla, ED1+ED2+, ED1+ED2, and ED1ED2+ cells were detected in the ratio 2:1:3. Our rsults suggest that dendritic cells and macrophages mature during their migration within the adrenal gland. These immunocompetent cells may contribute to a paracrine regulation of adrenal function under physiological conditions. Accepted: 3 November 1997  相似文献   

5.
Astrocytes and microglia, two glial cell populations of the CNS, have been described to be involved in many immune processes. We used defined combinations of cytokines, interferon gamma (IFN-gamma)/interleukin-1 alpha (IL-1 alpha) and IFN-gamma/tumor necrosis factor alpha (TNF alpha), to simulate different in vitro immune environments observed in disease or inflammation. In these conditions, we analyzed and compared the regulating effects of these cytokines on cell surface and total expression of MHC II and on the capacity of murine astrocytes and microglia to present peptide and native antigens to specific primed T cells. Neither IL-1 alpha nor TNF alpha affected the IFN-gamma-induced antigen presentation capacity of microglia. Astrocytes, however, were severely impaired in their capacity to present native antigens and, to a minor extent, a peptide antigen. Total expression of MHC II was not affected by these cytokines in microglia, whereas in astrocytes it was reduced by IL-1 alpha and increased by TNF alpha. Both cytokines downregulated MHC II expression at the surface of astrocytes, but not of microglia. This shows that TNF alpha affects the of IFN-gamma-immunocompetent astrocytes to process and present antigen, probably either by altering membrane traffic of MHC II and of antigen and/or enzymatic activities associated with these mechanisms, while IL-1 alpha does so by downregulating MHC II expression. Altogether, our results illustrate how differently astrocytes and microglia react toward a defined, similar immune environment. One type of cell, the astrocytes, downregulate their T-cell stimulation and MHC II trafficking, and probably also their antigen processing, functions while the other, the microglia, maintain their antigen presentation potential.  相似文献   

6.
The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen‐presenting properties are present in the mouse pineal gland.  相似文献   

7.
8.
Localisation of the MRC OX-2 Glycoprotein on the Surfaces of Neurones   总被引:6,自引:1,他引:5  
The MRC OX-2 monoclonal antibody recognises membrane glycoproteins of Mr 41,000 in rat brain and 47,000 on thymocytes. It also reacts with follicular dendritic cells in lymphoid organs, endothelium, smooth muscle, and B-lymphocytes. Indirect immunoperoxidase staining of cryostat sections showed that OX-2 antigen was present throughout the cerebellum, with staining of both grey and white matter. Blood vessels were also stained. The Purkinje cell layer appeared to be unlabelled. Double-immunofluorescence staining of cerebellar interneurone cultures with MRC OX-2 antibody and tetanus toxin showed that all tetanus-positive cells (neurones) were MRC OX-2-positive. Glial fibrillary acidic protein-positive astrocytes were not labelled by MRC OX-2 antibody. Thus OX-2 antigen is one of the few biochemically characterised components of neuronal membranes and its properties are compared with those of the neuronal membrane glycoprotein Thy-1.  相似文献   

9.
The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland.  相似文献   

10.
Specific populations of hepatic sinusoidal cells were stained with monoclonal antibodies that recognize monocytes/macrophages (ED1), tissue macrophages (Kupffer cells) (ED2), MHC class II (Ia) antigen (MRC OX6), and dendritic cells/γ,δ T-cells (MRC OX62) and analyzed by light and electron microscopy. The majority of ED1+ and/or ED2+ cells were localized to the hepatic parenchyma, whereas OX6+ and/or OX62+ cells were more densely distributed within Glisson’s sheath than in the hepatic parenchyma. Double-immunoperoxidase staining of normal liver for ED1, ED2, and OX6 identified dendritic cells (DC) of two different phenotypes, ED1+ED2OX6+ and ED1ED2OX6+. DC can be classified into three different types based on ultrastructural characteristics. The first type (type I) is characterized by one or more long cytoplasmic processes and a well-developed lysosomal system. The second type (type II) has an inconspicuous lysosomal system, abundant hyaloplasm, and characteristic short cytoplasmic processes. The third type (type I–II) has cytologic features intermediate between those of type I and type II DC. At the electron-microscopic level, these three cell types are found in the sinusoidal lumen, whereas the majority of type II DC are located in the space of Disse and Glisson’s sheath. Furthermore, some OX6-labeled elongated DC appeared to traverse the lumen of sinusoids through endothelial pores to enter the space of Disse. One hour after intravenous injection of latex particles (0.81 μm in diameter), numerous latex-laden dendritic cells (ED1+OX6+, type I and type I–II) were detected in the lumen of hepatic sinusoids, but not in the space of Disse or Glisson’s sheath. These findings suggest that normal rat liver contains resident dendritic cells which downregulate phagocytic activity and mature into potent accessory cells during migration from the portal vein toward the central vein. These DC then traverse the sinusoidal lumen to the hepatic lymph system via the space of Disse. Received: 8 May 1998 / Accepted: 15 June 1998  相似文献   

11.
Summary Antigenic markers characteristic of astrocytes and their differentiative states (i.e., glial fibrillary acidic protein (GFAP), vimentin, and M1 and C1 antigens) were investigated in the pineal gland of mouse and rat using double immunolabeling techniques. In both species the socalled interstitial cells as characterized by TEM were shown to be astrocytes, since they expressed vimentin, but neither fibronectin (a marker for fibroblasts and endothelial cells) nor the neuron-specific L1 antigen or tetanus toxin receptors. Subpopulations of vimentin-positive pineal astrocytes were also GFAP- and C1- antigen-positive. M1- antigenpositive cells were not detected.It is concluded that a considerable proportion of interstitial cells in the pineal gland of rat and mouse are immature astrocytes which, in contrast to other parts of the central nervous system, persist into adulthood.Supported in part by Deutsche Forschungsgemeinschaft (Scha 185/9-4)S.-K. Huang was a recipient of a Humboldt Foundation fellowship.  相似文献   

12.
13.
This report deals with the distribution, morphology and specific topical relationships of bone-marrow-derived cells (free cells) in the spinal meninges and dorsal root ganglia of the normal rat. The morphology of these cells has been studied by transmission and scanning electron microscopy. Cells expressing the major histocompatibility complex (MHC) class II gene product have been recognized by immunofluorescence. At the level of the transmission electron microscope, free cells are found in all layers of the meninges. Many of them display characteristic ultrastructural features of macrophages, whereas others show a highly vacuolated cytoplasm and are endowed with many processes. These elements lack a conspicuous lysosomal system and might represent dendritic cells. Scanning electron microscopy has revealed that free cells contact the cerebrospinal fluid via abundant cytoplasmic processes that cross the cell layers of the pia mater and of the arachnoid. Cells expressing the MHC class II antigen are also found in all layers of the meninges. They are particularly abundant in the layers immediately adjacent to the subarachnoid space, in the neighbourhood of dural vessels, along the spinal roots and in the dural funnels. In addition to the meninges, strong immunoreactivity for MHC class II antigen is observed in the dorsal root ganglia. The ultrastructural and immunohistochemical findings of this study suggest the existence of a well-developed system of immunological surveillance of the subarachnoid space and of the dorsal root ganglia.  相似文献   

14.
We examined the infiltration of acutely rejecting renal allografts (DA→LEW) by ED1+ and ED2+ macrophages and T lymphocytes at intervals of 24 h after transplantation. Donor and recipient macrophages were differentiated by MHC class II antigen expression in double-staining experiments with ED1. Proliferation was assayed after pulse-labelling with BrdU. We subdivided allograft infiltration into three consecutive phases: 1) During phase I on days 1 to 2 after allogeneic kidney transplantation, perivascular infiltrates developed that contained numerous donor and recipient macrophages. Allograft rejection could already be diagnosed 24?h after transplantation by perivascular infiltration of T lymphocytes, whereas T cells were rarely found in isografts. 2) Phase II of allograft rejection from day 3 to 4 was characterized by massive propagation of the infiltrate. About equal numbers of interstitial donor and recipient macrophages were counted. Both macrophages and T lymphocytes proliferated in situ and macrophages outnumbered T cells until complete rejection. 3) During phase III the allograft was destroyed. Large intravascular monocytes surprisingly expressed the ED2 antigen. In the interstitium of viable graft regions, the population of recipient macrophages grew, whereas the population of donor macrophages and of T lymphocytes decreased.  相似文献   

15.
The purpose of the current study was to characterize parasite-containing cells located in spleens of BALB/c mice infected with Leishmania donovani. In particular, expression of MHC class II molecules by these cells was examined to determine whether they could potentially act as cells capable of immunostimulating Leishmania-reactive CD4+ T lymphocytes. To this end, an immunohistological analysis of spleens taken at various time points after infection was undertaken. Using this approach, we observed, in the red pulp, the formation of small cellular infliltrates containing heavily infected macrophages that could be stained with the monoclonal antibodies MOMA-2 and FA/11. All of them expressed high levels of MHC class II molecules. Parasites were also detected in the white pulp, especially in MOMA-2+, FA/11+ and MHC class II+ macrophages of the periarteriolar lymphocyte sheath and in MOMA-2+ marginal zone macrophages. Infected cells were further characterized by fluorescence microscopy after their enrichment by adherence. All infected mononuclear cells recovered by this procedure could be stained with MOMA-2 and FA/11 and thus very probably belonged to the mononuclear phagocyte lineage. Furthermore, all of them strongly expressed both MHC class II as well as H-2M molecules, regardless of the time points after infection. Analysis of the parasitophorous vacuoles (PV) by confocal microscopy showed that these compartments were surrounded by a membrane enriched in lysosomal glycoproteins lamp-1 and lamp-2, in macrosialin (a membrane protein of prelysosomes recognized by FA/11) and in MOMA-2 antigen. About 80% of the PV also had MHC class II and H-2M molecules on their membrane. Altogether, these data indicate that in the spleens of L. donovani-infected mice, a high percentage of amastigotes are located in macrophages expressing MHC class II molecules and that they live in PV exhibiting properties similar to those of PV detected in mouse bone marrow-derived macrophages exposed to a low dose of interferon gamma (IFN-gamma) and infected in vitro.  相似文献   

16.
The dendritic cells and related antigen-presenting cells (APCs) that activate lymphocytes for acquired immunity in the female reproductive tract are not well characterized. The aim of the present study was to examine heterogeneity among uterine APCs in mice and, specifically, to determine whether phenotypically and functionally distinct subpopulations of dendritic cells and macrophages can be identified. Using immunohistochemistry, abundant cells expressing APC-restricted molecules major histocompatibility complex (MHC) class II, F4/80, class A scavenger receptor, macrosialin, and sialoadhesin were evident in estrous mice. Cells expressing the costimulatory molecule B7-2 were rarely observed. Flow cytometric analysis revealed three subpopulations of uterine APCs. Undifferentiated macrophages were F4/80-positive (+), MHC class II-negative (-) cells, of which 70-80% expressed CD11b, but few expressed class A scavenger receptor, macrosialin, or sialoadhesin. Mature macrophages were F4/80+/MHC class II+ cells, of which approximately 50% expressed CD11b, class A scavenger receptor, macrosialin, and sialoadhesin. Uterine dendritic cells were F4/ 80-/MHC class II+ cells, with stimulatory immunoaccessory function relative to uterine macrophages and heterogeneous expression of dendritic markers 33D1, DEC205, CD11c, and CD1. Experiments in ovariectomized mice showed that undifferentiated macrophages were steroid hormone dependent but that mature macrophages and dendritic cells persisted after depletion of ovarian steroid hormones, although with altered phenotypes. In summary, our findings identify three discrete populations of APCs inhabiting the murine uterus and suggest that both mature macrophages and dendritic cells differentiate from undifferentiated macrophage precursor cells. Plasticity in the ontogenetic and functional relationships between uterine dendritic cells and macrophages likely is critical in regulating immune responses conducive to reproductive success.  相似文献   

17.
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.  相似文献   

18.
Transforming growth factor-beta 1 (TGF-beta 1) has been shown to up-regulate the synthesis of nerve growth factor (NGF) in cultured rat astrocytes and in neonatal brain in vivo (Lindholm, D., B. Hengerer, F. Zafra, and H. Thoenen. 1990. NeuroReport. 1:9-12). Here we show that mRNA encoding TGF-beta 1 increased in rat cerebral cortex after a penetrating brain injury. The level of NGF mRNA is also transiently increased after the brain trauma, whereas that of brain-derived neurotrophic factor remained unchanged. In situ hybridization experiments showed a strong expression of TGF-beta 1 4 d after the lesion in cells within and in the vicinity of the wound. Staining of adjacent sections with OX-42 antibodies, specific for macrophages and microglia/brain macrophages, revealed a similar pattern of positive cells, suggesting that invading macrophages, and perhaps reactive microglia, are the source of TGF-beta 1 in injured brain. Both astrocytes and microglia express TGF-beta 1 in culture, and TGF-beta 1 mRNA levels in astrocytes are increased by various growth factors, including FGF, EGF, and TGF-beta itself. TGF-beta 1 is a strong inhibitor of astrocyte proliferation and suppresses the mitotic effects of FGF and EGF on astrocytes. The present results indicate that TGF-beta 1 expressed in the lesioned brain plays a role in nerve regeneration by stimulating NGF production and by controlling the extent of astrocyte proliferation and scar formation.  相似文献   

19.
Animals were identified from two sire lines as being homozygous for the class I bovine lymphocyte antigen (BoLA-A) w23. These animals were also shown to be homozygous for class II antigens (BoLA-D) which, however, differed between the two sire lines. Lymphocytes from these animals were then used either as stimulator cells in one-way mixed lymphocyte reactions (MLR) with all animals in the herd carrying the w23 antigen or as antigen presenting cells to bovine T4+ cell blasts. It was shown that, within each sire line, the genes encoding the MHC class I and class II antigens were closely linked. There were no detected recombinations between the MHC class I and class II regions nor within the BoLA-D region responsible for mixed lymphocyte reactivity. MLR typing of MHC class II antigens correlated with the results from T-lymphocyte proliferation studies. Cells from these cattle, which are homozygous at the class I and II MHC loci but differ in the class II antigen expressed, could be used to type the BoLA-D of other cattle.  相似文献   

20.
Activation of MHC-restricted rat T cells by cloned syngeneic thyrocytes   总被引:1,自引:0,他引:1  
We have previously demonstrated that rat thyrocytes express MHC class II Ag (RT1.B&D) in response to IFN-gamma. To determine whether MHC class II-positive thyrocytes can be recognized by MHC-restricted T cells, we used our clone of rat thyroid cells (1B-6) derived from the Fisher rat thyroid cell line (FRTL-5) and known to express MHC class II Ag in response to recombinant rat IFN-gamma. CD4+ and CD8+ normal syngeneic Fisher rat spleen T cells were selected by flow cytometry and averaged greater than 96% purity. We demonstrated that irradiated MHC class II-positive but not class II-negative 1B-6 thyrocytes stimulated CD4+ T cells in a primary sensitization reaction over 4 days. In contrast, CD8+ T cells had no response in similar experiments. This stimulation of CD4+ T cells was dose dependent for 1B-6 thyrocytes and was abrogated by anti-rat MHC class II mAb (MRC OX-6). Autoreactive (Fisher) and alloreactive (Buffalo) T cell lines and isolated CD4+ T cells derived from these lines, which were developed against Fisher rat spleen cells, similarly recognized MHC class II Ag expressed on 1B-6 cells but had no detectable response to 1B-6 MHC class II-negative thyrocytes or MHC class II-positive human thyroid cells. The CD4+ T cell recognition of 1B-6 cells via MHC class II Ag supports our previous data with autologous human thyroid T cell co-cultures and is indicative of an autospecific role for thyrocytes in the development of autoimmune thyroiditis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号