首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A xeroderma pigmentosum (XP) cell line from complementation group C has been complemented to attain ultraviolet (UV) resistance and DNA repair proficiency, by transfection with a human expression cDNA library, followed by selection to UV resistance. We now show that the transfected cDNAs can be rescued from cellular DNA of a secondary transformant by its in vitro amplification using expression-vector-specific oligodeoxyribonucleotides as primers in a polymerase chain reaction. The amplified cDNAs were cloned into a mammalian expression vector. Their transfection into XP cells identified a single cDNA which specifically complemented the UV sensitivity of a group-C-derived cell line to the same partial UV-resistance levels exhibited by the transformant from which the cDNAs were rescued.  相似文献   

2.
A uniform response to UV of four normal cell strains was demonstrated. One excision-proficient xeroderma pigmentosum variant strain (XP7TA) had a wild-type UV response but a second (XP30RO) was more sensitive. An excision-deficient xeroderma pigmentosum strain XP4L0 was substantially more sensitive than wild-type cell strains. A continuous post-irradiation treatment with non-toxic levels of caffeine enhanced the lethal effect of UV light in both xeroderma pigmentosum variant cell strains but not in cells from normal individuals. There was no detectable effect on cells from a xeroderma pigmentosum individual from complementation group A. These results correlate well with observations on the influence of caffeine on post-replication repair in the three classes of cells.  相似文献   

3.
The sun-sensitive, cancer-prone genetic disorder xeroderma pigmentosum (XP) is associated in most cases with a defect in the ability to carry out excision repair of UV damage. Seven genetically distinct complementation groups (i.e., A–G) have been identified. A large proportion of patients with the unrelated disorder trichothiodystrophy (TTD), which is characterized by hair-shaft abnormalities, as well as by physical and mental retardation, are also deficient in excision repair of UV damage. In most of these cases the repair deficiency is in the same complementation group as is XP group D. We report here on cells from a patient, TTD1BR, in which the repair defect complements all known XP groups (including XP-D). Furthermore, microinjection of various cloned human repair genes fails to correct the repair defect in this cell strain. The defect in TTD1BR cells is therefore in a new gene involved in excision repair in human cells. The finding of a second DNA repair gene that is associated with the clinical features of TTD argues strongly for an involvement of repair proteins in hair-shaft development.  相似文献   

4.
The clastogenic effect of mitomycin C (MC) was determined in two normal fibroblast cell lines and two xeroderma pigmentosum (XP) cell lines, a variant and a group A excision-deficient line. The group A xeroderma cell line was substantially more sensitive to MC than either the XP variant or the normal human cells. On caffeine post-treatment potentiation of the MC-induced aberration frequency occurred in all the cell lines. The XP varian cell line exhibited a distinctly higher sensitivity to caffeine than the classical XP or the normal human cell lines.  相似文献   

5.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

6.
Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. Defects in NER result in three different human disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). Two cases with the combined features of XP and CS have been assigned to the XP-D complementation group. Despite their extreme UV sensitivity, these cells appeared to incise their DNA as efficiently as normal cells in response to UV damage. These incisions were, however, uncoupled from the rest of the repair process. Using cell-free extracts, we were unable to detect any incision activity in the neighbourhood of the damage. When irradiated plasmids were introduced into unirradiated XP-D/CS cells, the ectopically introduced damage triggered the induction of breaks in the undamaged genomic DNA. XP-D/CS cells thus have a unique response to sensing UV damage, which results in the introduction of breaks into the DNA at sites distant from the damage. We propose that it is these spurious breaks that are responsible for the extreme UV sensitivity of these cells.  相似文献   

7.
The rare hereditary disease xeroderma pigmentosum (XP) is clinically characterized by extreme sun sensitivity and an increased predisposition for developing skin cancer. Cultured cells from XP patients exhibit hypersensitivity to ultraviolet (UV) radiation due to the defect in nucleotide excision repair (NER), and other cellular abnormalities. Seven genes identified in the classical XP forms, XPA to XPG, are involved in the NER pathway. In view of developing a strategy of gene therapy for XP, we devised recombinant retrovirus-carrying DNA repair genes for transfer and stable expression of these genes in cells from XP patients. Results showed that these retroviruses are efficient tools for transducing XP fibroblasts and correcting repair-defective cellular phenotypes by recovering normal UV survival, unscheduled DNA synthesis, and RNA synthesis after UV irradiation, and also other cellular abnormalities resulting from NER defects. These results imply that the first step of cellular gene therapy might be accomplished successfully.  相似文献   

8.
The relationships between the cytotoxic effect of ultraviolet light and the UV-induced sister-chromatid exchanges (SCEs) were compared among fibroblast cell strains from two unrelated Bloom's syndrome (BS) patients, one xeroderma pigmentosum (XP) patient belonging to complementation group A and two unrelated normal controls. The "net" induced SCEs as a function of UV fluence, obtained by subtracting spontaneous SCEs from observed SCEs, were much higher in both BS cells and XP group A cells than in normal cells. The relative efficiency of induced SCE, defined as the "net" induced SCEs as a function of surviving fraction after UV irradiation, was higher in BS cells than in normal and XP cells, and there was essentially no difference between XP and normal cells. These results imply that in addition to the extremely high frequency of spontaneous SCEs, the increased efficiency in UV induction of SCEs may reflect the intrinsic defect(s) in BS cells.  相似文献   

9.
Microcell-mediated transfer of a single human chromosome from repair-proficient human cells to genetic complementation group F cells from the hereditary disease xeroderma pigmentosum (XP) results in partial complementation of repair-defective phenotypes. The complementing chromosome was identified by cytogenetic and molecular analysis as human chromosome 15. Transfer of this chromosome to XP-F cells restores approximately 20% of the resistance of wild-type cells to killing by UV radiation or by the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), as well as partial repair synthesis of DNA measured as unscheduled DNA synthesis. Additionally, complemented XP-F cells have an enhanced capacity for reactivation of the plasmid-borne E. coli cat gene following its inactivation by UV radiation. Phenotypic complementation of XP cells by chromosome 15 is specific to genetic complementation group F; no effect on the UV sensitivity of XP-A, XP-C, or XP-D cells was detected. The observation that phenotypic complementation is partial is open to several interpretations and does not allow the definitive conclusion that the XP-F locus is carried on chromosome 15.  相似文献   

10.
We investigated the lethal, UV killing-potentiating and repair-inhibiting effects of trivalent arsenic trioxide (As2O3) and pentavalent sodium arsenate (Na2HAsO4) in normal human and xeroderma pigmentosum (XP) fibroblasts. The presence of As2O3 for 24 h after UV irradiation inhibited the thymine dimer excision from the DNA of normal and XP variant cells and thus the subsequent unscheduled DNA synthesis (UDS): excision inhibitions were partial, 30-40%, at a physiological dose of 1 microgram/ml and 100% at a supralethal dose of 5 micrograms/ml. Correspondingly, As2O3 also potentiated the lethal effect of UV on excision-proficient normal and XP variant cells in a concentration-dependent manner, but not on excision-defective XP group A cells. Na2HAsO4 (As5+) was approximately an order of magnitude less effective in preventing all the above repair events than As2O3 (As3+) which is highly affinic to SH-containing proteins. The above results provide the first evidence that arsenic inhibits the excision of pyrimidine dimers. Partially repair-suppressing small doses of As2O3 (0.5 microgram/ml) and Na2HAsO4 (5 micrograms/ml) enhanced co-mutagenically the UV induction of 6-thioguanine-resistant mutations of V79 Chinese hamster cells. Thus, such a repair inhibition may be one of the basic mechanisms for the co-mutagenicity and presumably co-carcinogenicity of arsenic. XP group A and variant strains showed a unique higher sensitivity to As2O3 and Na2HAsO4 killing by a yet unidentified mechanism.  相似文献   

11.
Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. We have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. These breaks, measured by alkaline sucrose sedimentation, increased linearly with the dose of UV light over the range tested (10-40 J/m2). The breaks cannot be photolytically induced 5 h after a UV dose of 20 J/m2 in normal cells; however, in xeroderma pigmentosum variant cells, the breaks are inducible for up to 24 h after UV irradiation. Xeroderma pigmentosum group A cells in the same 5-h period show an increase in the number of strand breaks seen with 313-nm light photolysis from about 2 to 4 breaks/10(9) dalton DNA. These breaks can then be induced for up to 24 h. These data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells.  相似文献   

12.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

13.
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains, and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.  相似文献   

14.
The rate of removal of pyrimidine dimers from DNA of UV (254 nm)-irradiated (1 J/m2) normal and xeroderma pigmentosum (XP) cells maintained in culture as nondividing populations was determined. Several normal and XP strains from complementation groups A, C and D were studied. The excision rates and survival ability of nondividing cells were examined to determine if an abnormal sensitivity was associated with a decreased rate of dimer excision. The results show that all normal strains studied excise pyrimidine dimers at the same rate, with the rate curve characterized by two components. All 'excision-deficient' XP strains excise dimers at a slower-than-normal rate, with the rate curves also characterized by two components. The rate constants for the first components of all of the XP strains (group A, C and D) are the same, one tenth of the normal rate constant, except for XP8LO (group A). XP8LO has a first-component rate constant similar to that of normal strains and a second component rate constant similar to that of other group A strains (XP12BE, XP25RO). Thus, the slower rate of dimer excision in XP8LO is due to a defect in the mechanism responsible for the second component of the excision-rate curve. In general, an abnormal sensitivity of nondividing cells to UV is associated with a reduced dimer-excision rate. A notable exception to this is the group C strain XP1BE which has an initial repair rate similar to that of group A XP12BE but is considerably more resistant when survival is measured.  相似文献   

15.
We have established viral-transformed, apparently permanent (immortalized) cell lines from diploid fibroblasts representative of normal and xeroderma pigmentosum (XP) A, G and variant individuals. The XP-G and XP-variant cells represent complementation groups not previously available as permanent lines. All the new permanent cell lines exhibit SV40 T-antigen expression. They are also aneuploid and have growth characteristics typical of viral transformants. They have retained the phenotypes of UV sensitivity, reduced repair synthesis or defective 'postreplication repair' appropriate to the XP complementation group they represent. Additionally, the new cell lines are all transfectable with the selectable plasmid pRSVneo. The XP-G and XP-variant cell lines show enhanced transfection with UV-irradiated plasmid DNA; a phenomenon previously reported for normal immortalized cells and for immortalized cells from the A and F complementation groups of XP.  相似文献   

16.
Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome, which is characterized by genome instability, cancer susceptibility, and premature aging. To better define the cellular function of the RecQ4 protein, we investigated the subcellular localization of RecQ4 upon treatment of cells with different DNA-damaging agents including UV irradiation, 4-nitroquinoline 1-oxide, camptothecin, etoposide, hydroxyurea, and H(2)O(2). We found that RecQ4 formed discrete nuclear foci specifically in response to UV irradiation and 4-nitroquinoline 1-oxide. We demonstrated that functional RecQ4 was required for the efficient removal of UV lesions and could rescue UV sensitivity of RecQ4-deficient Rothmund-Thomson syndrome cells. Furthermore, UV treatment also resulted in the colocalization of the nuclear foci formed with RecQ4 and xeroderma pigmentosum group A in human cells. Consistently, RecQ4 could directly interact with xeroderma pigmentosum group A, and this interaction was stimulated by UV irradiation. By fractionating whole cell extracts into cytoplasmic, soluble nuclear, and chromatin-bound fractions, we observed that RecQ4 protein bound more tightly to chromatin upon UV irradiation. Taken together, our findings suggest a role of RecQ4 in the repair of UV-induced DNA damages in human cells.  相似文献   

17.
Clonogenic survival response to 254-nm ultraviolet light was measured in 2 strains of repair-proficient normal human fibroblasts and 4 strains of xeroderma pigmentosum (XP) fibroblasts belonging to complementation groups A, C, D and variant. In all strains except XPA, cells irradiated in plateau phase and subcultured immediately were much more resistant to the lethal effect of UV than cells irradiated in the exponential phase of growth. Typically, 10-20% of plateau-phase cells were extremely resistant. When the cultures were held in plateau phase for 24 h after irradiation and before subculture, there was a further enhance of survival. By use of a UV-specific endonuclease assay, no difference was found in the number of DNA lesions induced in exponentially growing and plateau cultures by the same dose of UV light. Thus plateau-phase cells appear to be more efficient in their DNA-repair capability than cells in exponential growth. XP group A cells were uniquely found to be deficient in the processes which lead to plateau-phase resistance. Since plateau-phase repair was not lacking in XP groups C, D and variant, it may be related to a DNA-repair process different from that which is responsible for the overall UV sensitivity of these cells.  相似文献   

18.
N Suzuki  H Suzuki 《Mutation research》1988,202(1):179-183
Effects of human interferon (HuIFN)-alpha on UV mutagenicity were examined in a human cell strain, RSa, and xeroderma pigmentosum (XP)-derived fibroblasts (XP1KY). The frequency of ouabain-resistance mutation in UV-irradiated RSa cells was unusually high (Suzuki et al., 1985), but that in cells pretreated with HuIFN-alpha before irradiation was reduced. 6-Thioguanine-resistance mutation was also depressed in XP1KY cells treated with HuIFN-alpha before irradiation. However, the depression of UV mutagenicity by HuIFN-alpha was lessened by treatment with cycloheximide immediately after UV irradiation. The relationship between HuIFN-depressed UV mutagenicity and HuIFN-affected DNA-repair and repair-related functions is discussed.  相似文献   

19.
20.
A structural gene for T4 endonuclease V was constructed by ligating synthetic oligonucleotides. The endonuclease V was overproduced in E. coli under control of the E. coli tryptophan promoter and purified to apparent homogeneity. The product had comparable DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease activities to the natural enzyme in vitro. When this endonuclease V was microinjected into the cytoplasm of xeroderma pigmentosum (XP) cells of complementation group A, B, C, D, F, G or H, unscheduled DNA synthesis (UDS) above the residual level was detected in all the cells at a dose of about 10(3) molecules following UV irradiation. The gain numbers of UDS in these XP cells increased with increase in the dose of enzyme and reached a plateau at the normal cell level on introduction of about 10(4) molecules. Introduction of more enzyme into either XP cells or normal human cells did not increase the grain number under regular labelling conditions (2.5 h, 37 degrees C). In normal mouse cells, introduction of the enzyme increased the grain number more than 4-fold under the same conditions during at least 8.5 h following UV irradiation. Furthermore, with a labelling time of 30 min, the enzyme more than doubled the grain number even in normal human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号