首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work from this laboratory had shown that ligases may catalyze the synthesis of (di)nucleoside polyphosphates. Here, we show that one of the enzymes of the proteasome system (E1 or the ubiquitin (Ub) activating enzyme, EC 6.3.2.19) catalyzes very effectively (k(cat) = 0.29+/-0.05 s(-1)) the transfer of AMP from the E-AMP-ubiquitin complex to tripolyphosphate or tetrapolyphosphate with formation of adenosine tetra- or pentaphosphate (p4A or p5A), respectively. Whereas the concomitant formation of AMP is stimulated by the presence of dithiothreitol in a concentration dependent manner, the synthesis of p4A is only slightly inhibited by this compound. Previous treatment of the enzyme (E1) with iodoacetamide inhibited only partially the synthesis of p4A. p4A can substitute for ATP as substrate of the reaction to generate the ubiquityl adenylate complex. A small amount of diadenosine pentaphosphate (Ap5A) was also synthesized in the presence of p4A.  相似文献   

2.
T4 RNA ligase catalyzes the synthesis of ATP beta,gamma-bisphosphonate analogues, using the following substrates with the relative velocity rates indicated between brackets: methylenebisphosphonate (pCH(2)p) (100), clodronate (pCCl(2)p) (52), and etidronate (pC(OH)(CH(3))p) (4). The presence of pyrophosphatase about doubled the rate of these syntheses. Pamidronate (pC(OH)(CH(2)-CH(2)-NH(2))p), and alendronate (pC(OH)(CH(2)-CH(2)-CH(2)-NH(2))p) were not substrates of the reaction. Clodronate displaced the AMP moiety of the complex E-AMP in a concentration dependent manner. The K(m) values and the rate of synthesis (k(cat)) determined for the bisphosphonates as substrates of the reaction were, respectively: methylenebisphosphonate, 0.26+/-0.05 mM (0.28+/-0.05 s(-1)); clodronate, 0.54+/-0.14 mM (0.29+/-0.05 s(-1)); and etidronate, 4.3+/-0.5 mM (0.028+/-0.013 s(-1)). In the presence of GTP, and ATP or AppCCl(2)p the relative rate of synthesis of adenosine 5',5'-P(1),P(4)-tetraphosphoguanosine (Ap(4)G) was around 100% and 33%, respectively; the methylenebisphosphonate derivative of ATP (AppCH(2)p) was a very poor substrate for the synthesis of Ap(4)G. To our knowledge this report describes, for the first time, the synthesis of ATP beta,gamma-bisphosphonate analogues by an enzyme different to the classically considered aminoacyl-tRNA synthetases.  相似文献   

3.
4.
5.
6.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   

7.
A facile and efficient method has been developed for the optical resolution of racemic jasmonic acid (JA) on a relatively large scale and was successfully utilized for the preparation of optically pure (+)-JA and (?)-JA. We indicated that (+)-JA has lower growth inhibitory activity than (?)-JA in the rice seedling growth test and confirmed in line with an earlier observation that their respective biologically-active forms, (+)-JA-Ile and (?)-JA-Ile, show comparable inhibitory activities. We compared the metabolism of (+)-JA and (?)-JA into (+)-JA-Ile and (?)-JA-Ile, respectively, in the JA-deficient rice cpm2, and found that the exogenously applied (+)-JA was metabolized to the corresponding Ile conjugate less efficiently as compared with (?)-JA. Such metabolic rate difference may cause a discrepancy between biological potencies of (+)-JA and (?)-JA in rice.

Abbreviations: FW: fresh weight; Ile: isoleucine; JA: jasmonic acid; JA-Ile: jasmonoyl-l-isoleucine; LC-ESI-MS/MS: liquid chromatography and electrospray ionization tandem mass spectrometry; MeJA: methyl jasmonate; OPDA: 12-oxophytodienoic acid  相似文献   


8.
We report the development of a synthetic, biotin-conjugated diadenosine tetraphosphate (Ap(4)A)-'molecular hook' attached to magnetic beads enabling the isolation of Ap(4)A-binding proteins from bacterial cells or mammalian tissue lysates. Characterisation and identification of isolated binding proteins is performed sequentially by mass spectrometry. The observation of positive controls suggests that these newly observed proteins are putative Ap(4)A-binding partners, and we have expectations that others can be found with further technical improvements in our methods.  相似文献   

9.
Diadenosine 5′, 5?-p1, p4-tetraphosphate (Ap4A) strongly inhibited ADP-ribosylation reaction of histone by purified bovine thymus poly(ADP-ribose) polymerase. This compound showed a relatively weak inhibitory effect on Mg2+-dependent, enzyme-bound poly(ADP-ribose) synthesis. Among various adenine nucleotides tested, including several diadenosine nucleotides with varying phosphate chain length, Ap4A was the most effective inhibitor of the histone-modification reaction. Ap5A and Ap6A showed slightly lower inhibitory effect than Ap4A. Kinetic analysis of the inhibitor (Ap4A) with varying concentration of substrate (NAD+) revealed that this compound is a “mixed type inhibitor”, with a Ki value of 5.1 μM.  相似文献   

10.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

11.
Wounding induces a series of coordinated physiological responses essential for protection and healing of the damaged tissue. Wound-induced formation of jasmonic acid (JA) is important in defense responses in leaves, but comparatively little is known about the induction of JA biosynthesis and its role(s) in tuber wound-healing. In this study, the effects of wounding on JA content, expression of JA biosynthetic genes, and the involvement of JA in the initiation of closing layer formation in potato tubers were determined. In addition, the role of abscisic acid (ABA) in wound-induced JA accumulation was examined. The basal JA content in non-wounded tuber tissues was low (<3 ng g−1 FW). Two hours after wounding, the JA content increased by >5-fold, reached a maximum between 4 and 6 h after wounding, and declined to near-basal levels thereafter. Tuber age (storage duration) had little effect on the pattern of JA accumulation. The expressions of the JA biosynthetic genes (StAOS2, StAOC, and StOPR3) were greatly increased by wounding reaching a maximum 2-4 h after wounding and declining thereafter. A 1-h aqueous wash of tuber discs immediately after wounding resulted in a 94% inhibition of wound-induced JA accumulation. Neither JA treatment nor inhibition of JA accumulation affected suberin polyphenolic accumulation during closing layer development indicating that JA was not essential for the initiation of primary suberization. ABA treatment did not restore JA accumulation in washed tuber tissues suggesting that leaching of endogenous ABA was either not involved or not solely involved in this loss of JA accumulation by washing. Collectively, these results indicate that JA is not required for the induction of processes essential to the initiation of suberization during closing layer development, but do not exclude the possibility that JA may be involved in other wound related responses.  相似文献   

12.
13.
For use as the internal standards in a quantitative analysis of natural jasmonic acid (JA) and methyl jasmonate (JAMe) by gas chromatography-mass spectrometry-selected ion monitoring, (±)-2-(2,3–2H2)JA and its methyl ester, (±)-2-(2,3–2H2)JAMe, were efficiently prepared from 2-(2–pentyl)-2-cyclopentenone through catalytic semi-deuteriogenation of acetylenic intermediates with deuterium gas in pyridine.  相似文献   

14.
S-adenosyl-l-methionine: 2-hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) methylates 2,7, 4'-trihydroxyisoflavanone to produce formononetin, an essential intermediate in the synthesis of isoflavonoids with methoxy or methylenedioxy groups at carbon 4' (isoflavone numbering). HI4'OMT is highly similar (83% amino acid identity) to (+)-6a-hydroxymaackiain 3-O-methyltransferase (HMM), which catalyzes the last step of (+)-pisatin biosynthesis in pea. Pea contains two linked copies of HMM with 96% amino acid identity. In this report, the catalytic activities of the licorice HI4'OMT protein and of extracts of Escherichia coli containing the pea HMM1 or HMM2 protein are compared on 2,7,4'-trihydroxyisoflavanone and enantiomers of 6a-hydroxymaackiain. All these enzymes produced radiolabelled 2,7-dihydroxy-4'-methoxyisoflavanone or (+)-pisatin from 2,7,4'-trihydroxyisoflavanone or (+)-6a-hydroxymaakiain when incubated with [methyl-(14)C]-S-adenosyl-l-methionine. No product was detected when (-)-6a-hydroxymaackiain was used as the substrate. HI4'OMT and HMM1 showed efficiencies (relative V(max)/K(m)) for the methylation of 2,7,4'-trihydroxyisoflavanone 20 and 4 times higher than for the methylation of (+)-6a-hydroxymaackiain, respectively. In contrast, HMM2 had a higher V(max) and lower K(m) on (+)-6a-hydroxymaackiain, and had a 67-fold higher efficiency for the methylation of (+)-6a-hydroxymaackiain than that for 2,7,4'-trihydroxyisoflavanone. Among the 15 sites at which HMM1 and HMM2 have different amino acid residues, 11 of the residues in HMM1 are the same as found in HI4'OMTs from three plant species. Modeling of the HMM proteins identified three or four putative active site residues responsible for their different substrate preferences. It is proposed that HMM1 is the pea HI4'OMT and that HMM2 evolved by the duplication of a gene encoding a general biosynthetic enzyme (HI4'OMT).  相似文献   

15.
Transient electrical currents generated by the Na(+)-transporting F(o)F(1)-ATPase of Ilyobacter tartaricus were observed in the hydrolytic and synthetic mode of the enzyme. Two techniques were applied: a photochemical ATP concentration jump on a planar lipid membrane and a rapid solution exchange on a solid supported membrane. We have identified an electrogenic reaction in the reaction cycle of the F(o)F(1)-ATPase that is related to the translocation of the cation through the membrane bound F(o) subcomplex of the ATPase. In addition, we have determined rate constants for the process: For ATP hydrolysis this reaction has a rate constant of 15-30 s(-1) if H(+) is transported and 30-60 s(-1) if Na(+) is transported. For ATP synthesis the rate constant is 50-70 s(-1).  相似文献   

16.
Six derivatives of 2-aminoindane-2-phosphonic acid and 1-aminobenzylphosphonic acid were synthesized. The compounds were tested both as inhibitors of buckwheat phenylalanine ammonia-lyase (in vitro) and as inhibitors of anthocyanin biosynthesis (in vivo). (+/-)-2-Amino-4-bromoindane-2-phosphonic acid was found to be the strongest inhibitor from investigated compounds. The results obtained are a basis for design of phenylalanine ammonia-lyase inhibitors useful in the enzyme structure studies in photo labelling experiments.  相似文献   

17.
The allene oxide cyclase (AOC) catalyzes the formation of cis-(+)-12-oxophytodienoic acid, an intermediate in jasmonate biosynthesis and is encoded by a single copy gene in tomato. The full length AOC promoter isolated by genome walk contains 3600 bp. Transgenic tomato lines carrying a 1000 bp promoter fragment and the full length promoter, respectively, in front of the beta-glucuronidase (GUS)-encoding uidA gene and several tobacco lines carrying the full length tomato AOC promoter before GUS were used to record organ- and tissue-specific promoter activities during development and in response to various stimuli. High promoter activities corresponding to immunocytochemically detected occurrence of the AOC protein were found in seeds and young seedlings and were confined to the root tip, hypocotyl and cotyledons of 3-d-old seedlings. In 10-d-old seedlings promoter activity appeared preferentially in the elongation zone. Fully developed tomato leaves were free of AOC promoter activity, but showed high activity upon wounding locally and systemically or upon treatment with JA, systemin or glucose. Tomato flowers showed high AOC promoter activities in ovules, sepals, anthers and pollen. Most of the promoter activity patterns found in tomato with the 1000 bp promoter fragment were also detected with the full length tomato AOC promoter in tobacco during development or in response to various stimuli. The data support a spatial and temporal regulation of JA biosynthesis during development and in response to environmental stimuli.  相似文献   

18.
Human thymidine kinase 1 (hTK1) and structurally related TKs from other organisms catalyze the initial phosphorylation step in the thymidine salvage pathway. Though ATP is known to be the preferred phosphoryl donor for TK1-like enzymes, its exact binding mode and effect on the oligomeric state has not been analyzed. Here we report the structures of hTK1 and of the Thermotoga maritima thymidine kinase (TmTK) in complex with the bisubstrate inhibitor TP4A. The TmTK-TP4A structure reveals that the adenosine moiety of ATP binds at the subunit interface of the homotetrameric enzyme and that the majority of the ATP-enzyme interactions occur between the phosphate groups and the P-loop. In the hTK1 structure the adenosine group of TP4A exhibited no electron density. This difference between hTK1 and TmTK is rationalized by a difference in the conformation of their quaternary structure. A more open conformation, as seen in the TmTK-TP4A complex structure, is required to provide space for the adenosine moiety. Our analysis supports the formation of an analogous open conformation in hTK1 upon ATP binding.  相似文献   

19.
Rv2613c is a diadenosine 5′,5?-P1,P4-tetraphosphate (Ap4A) phosphorylase from Mycobacterium tuberculosis H37Rv. Sequence analysis suggests that Rv2613c belongs to the histidine triad (HIT) motif superfamily, which includes HIT family diadenosine polyphosphate (ApnA) hydrolases and Ap4A phosphorylases. However, the amino acid sequence of Rv2613c is more similar to that of HIT family ApnA hydrolases than to that of typical Ap4A phosphorylases. Here, we report the crystal structure of Rv2613c, which is the first structure of a protein with ApnA phosphorylase activity, and characterized the structural basis of its catalytic activity. Our results showed that the structure of Rv2613c is similar to those of other HIT superfamily proteins. However, Asn139, Gly146, and Ser147 in the active site of Rv2613c replace the corresponding Gln, Gln, and Thr residues that are normally found in HIT family ApnA hydrolases. Furthermore, analyses of Rv2613c mutants revealed that Asn139, Gly146, and Ser147 are important active-site residues and that Asn139 has a critical role in catalysis. The position of Gly146 might influence the phosphorylase activity. In addition, the tetrameric structure of Rv2613c and the presence of Trp160 might be essential for the formation of the Ap4A binding site. These structural insights into Rv2613c may facilitate the development of novel structure-based inhibitors for treating tuberculosis.  相似文献   

20.
4-Coumarate:coenzyme A ligase (4CL) is known to activate cinnamic acid derivatives to their corresponding coenzyme A esters. As a new type of 4CL-catalyzed reaction, we observed the synthesis of various mono- and diadenosine polyphosphates. Both the native 4CL2 isoform from Arabidopsis (At4CL2 wild type) and the At4CL2 gain of function mutant M293P/K320L, which exhibits the capacity to use a broader range of phenolic substrates, catalyzed the synthesis of adenosine 5'-tetraphosphate (p(4)A) and adenosine 5'-pentaphosphate when incubated with MgATP(-2) and tripolyphosphate or tetrapolyphosphate (P(4)), respectively. Diadenosine 5',5',-P(1),P(4)-tetraphosphate represented the main product when the enzymes were supplied with only MgATP(2-). The At4CL2 mutant M293P/K320L was studied in more detail and was also found to catalyze the synthesis of additional dinucleoside polyphosphates such as diadenosine 5',5'-P(1),P(5)-pentaphosphate and dAp(4)dA from the appropriate substrates, p(4)A and dATP, respectively. Formation of Ap(3)A from ATP and ADP was not observed with either At4CL2 variant. In all cases analyzed, (di)adenosine polyphosphate synthesis was either strictly dependent on or strongly stimulated by the presence of a cognate cinnamic acid derivative. The At4CL2 mutant enzyme K540L carrying a point mutation in the catalytic center that is critical for adenylate intermediate formation was inactive in both p(4)A and diadenosine 5',5',-P(1),P(4)-tetraphosphate synthesis. These results indicate that the cinnamoyl-adenylate intermediate synthesized by At4CL2 not only functions as an intermediate in coenzyme A ester formation but can also act as a cocatalytic AMP-donor in (di)adenosine polyphosphate synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号