共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of the binding sites labeled by the radioligand 2-[125I]iodomelatonin were compared in chicken neuronal retina and retinal pigment epithelium (RPE). Specific binding of 2-[125I]iodomelatonin in both sites was stable, saturable, reversible, and of high affinity. Scatchard analysis revealed an affinity constant (KD) of 446 +/- 55 pM and a total number of binding sites (Bmax) of 25.4 +/- 2.2 fmol/mg of protein for neuronal retina. For RPE the KD was 34.1 +/- 2.2 pM and the Bmax 59.5 +/- 5.2 fmol/mg of protein. Competition experiments with various melatonin analogues gave the following order of affinities: 2-iodomelatonin greater than 2-chloromelatonin greater than melatonin greater than 6-chloromelatonin greater than 6-hydroxymelatonin greater than N-acetylserotonin greater than 6-methoxyharmalan greater than 5-hydroxytryptamine. Linear regression of log Ki values from neuronal retina and RPE gave a highly significant correlation (r = 0.994, n = 8; p less than 0.001). GTP inhibited specific binding to RPE membranes in a concentration-dependent manner, but not in neuronal retinal membranes. The present results strongly suggest that a single type of melatonin receptor is found in neuronal retina and RPE, and that the site in RPE is coupled to a guanine nucleotide-binding regulatory protein (G protein), but that in neuronal retina is not. 相似文献
2.
Specific melatonin binding sites were localized in the mammalian retina using the selective radioligand 2-[125I]iodomelatonin. Frozen sections obtained from both pigmented and albino rabbit eyes and albino mouse eyes were incubated with 2-[125I]iodomelatonin in the absence and presence of competing agents. In eyecups from albino rabbits, the highest density of specific 2-[125I]iodomelatonin binding sites was localized over the inner plexiform layer. Approximately 40-60% of the binding was specific, as determined with both the agonist 6-chloromelatonin and the antagonist luzindole. A high density of binding sites was observed over the choroid and retinal pigmented epithelium, but no statistical difference between total and nonspecific binding was detected. Results were similar with eyecups from pigmented rabbits. Albino mice showed a significant extent of 2-[125I]iodomelatonin binding in both the inner plexiform and the outer and inner segment layers. The specific binding of 2-[125I]iodomelatonin in retinas from albino rabbits maintained in the light for 24 h before decapitation was increased in the inner retina compared with the control. The distribution of 2-[125I]iodomelatonin binding sites in the various layers of the mammalian retina is consistent with the described functions for this hormone in retinal physiology. 相似文献
3.
Danielle Ofri Alain M. Ritter Yafang Liu Theresa L. Gioannini†‡ Jacob M. Hiller† Eric J. Simon† 《Journal of neurochemistry》1992,58(2):628-635
Opioid receptors were solubilized from bovine striatal membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate-(CHAPS). High concentrations of NaCl (0.5-1.0 M) were necessary to ensure optimal yields, which ranged from 40 to 50% of membrane-bound receptors. This requirement was found to be specific for sodium, with only lithium able to substitute partially, as previously reported for solubilization with digitonin. Opioid antagonists, but not agonists, were able to bind to soluble receptors with high affinity. High-affinity binding of mu, delta, and kappa agonists was reconstituted following polyethylene glycol precipitation and resuspension of CHAPS extract. Evidence is presented suggesting that this is the result of inclusion of receptors in liposomes. Competition and saturation studies indicate that the three opioid receptor types retain their selectivity and that they exist in the reconstituted CHAPS extract in a ratio (50:15:35) identical to that in the membranes. In reconstituted CHAPS extract, as in membranes, mu-agonist binding was found to be coupled to a guanine nucleotide binding protein (G protein), as demonstrated by the sensitivity of [3H][D-Ala2,N-methyl-Phe4,Gly5-ol]-enkephalin ([3H]DAGO) binding to guanosine 5'-O-(thiotriphosphate) (GTP gamma S). In the reconstituted CHAPS extract, complete and irreversible uncoupling by GTP gamma S was observed, whereas membrane-bound receptors were uncoupled only partially. Treatment with GTP gamma S, at concentrations that uncoupled the mu receptors almost completely, resulted in a fourfold decrease in the Bmax of [3H]DAGO binding with a relatively small change in the KD. Competition experiments showed that the Ki of DAGO against [3H]bremazocine was increased 200-fold.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
The present study demonstrates for the first time the solubilization of peripheral-type benzodiazepine binding sites (PBS) from cat cerebral cortex. Of all detergents tested [digitonin, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholate, and Triton X-100] in the presence of NaCl, the best solubilization (15% of initial activity) was obtained using 0.5% of the zwitterionic detergent CHAPS plus 2 M NaCl. Specific binding of [3H]PK 11195 to membrane-bound and solubilized PBS was saturable, yielding equilibrium dissociation constants (KD) of 1.3 +/- 0.2 and 1.9 +/- 0.3 nM, respectively, and maximal numbers of binding sites of 1,435 +/- 150 and 980 +/- 126 fmol/mg protein, respectively. The KD value of PK 11195 binding to solubilized PBS obtained from experimental kinetic analysis was 0.95 +/- 0.09 nM. The relative potencies of various compounds (PK 11195, Ro 5-4864, diazepam, flunitrazepam, clonazepam, methyl-beta-carboline-3-carboxylate, and Ro 15-1788) in displacing [3H]PK 11195 specific binding from membrane-bound and solubilized PBS were similar. Most of the solubilized binding activity was destroyed by heating at 60 degrees C for 30 min or by treatment with 2 M guanidinium chloride, which indicates the presence of a protein-binding site in the solubilized preparation. Over 85% of the solubilized binding activity was retained after 1 week at 4 degrees C, which will enable future application of purification procedures without major concern for stability of the material. 相似文献
5.
R. Niddam A. Dubois B. Scatton S. Arbilla S. Z. Langer 《Journal of neurochemistry》1987,49(3):890-899
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype. 相似文献
6.
[3 H]Neurokinin B and 125 I-Bolton Hunter Eledoisin Label Identical Tachykinin Binding Sites in the Rat Brain 总被引:6,自引:0,他引:6
L. Bergstrom Y. Torrens M. Saffroy J. C. Beaujouan S. Lavielle G. Chassaing J. L. Morgat† J. Glowinski A. Marquet 《Journal of neurochemistry》1987,48(1):125-133
[3H]Neurokinin B ([3H]NKB) of high specific activity (75 Ci/mmol) was synthesized for study of its binding to crude synaptosomes from the rat cerebral cortex. The specific binding of [3H]NKB (75% of total binding) was temperature dependent, saturable, and reversible. Scatchard analyses and Hill plots showed the existence of a single population of noninteracting binding sites (KD = 4.3 nM; Bmax = 123 fmol/mg of protein). Competition studies indicated the following rank order of potencies among tachykinins: NKB greater than eledoisin (E) greater than kassinin greater than physalaemin greater than neurokinin A (NKA) greater than substance P (SP), a result suggesting that NKB might be the endogenous ligand for [3H]NKB binding sites. It is of interest that 127I-Bolton Hunter (BH) NKA (127I-BHNKA) was much more potent than NKA in inhibiting the specific binding of [3H]NKB, which raises certain questions concerning the use of 125I-BHNKA as a ligand for NKA binding sites in the brain. These results, as well as those obtained with different SP analogues, show a close similarity to those obtained previously with 125I-BHE binding to cortical synaptosomes. This suggested that the two ligands labeled identical binding sites. In addition, using either [3H]NKB or 125I-BHE as ligands, similar displacement curves were obtained with increasing concentrations of NKB and 127I-BHE. The similarity of the [3H]NKB and 125I-BHE binding sites was further confirmed by comparison of their localization on rat brain sections by autoradiography. The distribution of binding sites for [3H]NKB and 125I-BHE was identical throughout the brain, and the highest density of binding sites for the two ligands was found in layers IV and V of the cerebral cortex, the paraventricular nucleus of the hypothalamus (magnocellular part), and the ventral tegmental area. 相似文献
7.
Karl-Norbert Klotz Roger Keil Franz J. Zimmer Ulrich Schwabe 《Journal of neurochemistry》1990,54(6):1988-1994
The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX), a highly selective A1 adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A1 receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [3H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [3H]DPCPX binding was the same as for guanine nucleotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., Gi, in the regulation of antagonist binding is suggested. This was confirmed by inactivation of Gi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [3H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A1 receptors for [3H]DPCPX but by an increased Bmax value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when most receptors are in a high-affinity state for agonists, only a few receptors are labeled by [3H]DPCPX. It is suggested that [3H]DPCPX binding is inhibited when receptors are coupled to Gi. Therefore, uncoupling of A1 receptors from Gi by guanine nucleotides or by inactivation of Gi with NEM results in an increased antagonist binding. 相似文献
8.
[3H]GTP [guanosine triphosphate] and [3H]GMP-PNP [guanosine 5'-(beta, 8-imino)triphosphate, a nonmetabolized analog of GTP] have been utilized as ligands to characterize binding sites of guanine nucleotides to rat brain membranes. Binding of both [3H]GTP and [3H]GMP-PNP is saturable, with respective KD values of 0.76 and 0.42 microM. The number of binding sites for GMP-PNP (4 nmol/g) is three times greater than for GTP (1.5 nmol/g). This discrepancy is caused by rapid degradation of GTP to guanosine by brain membranes, which can be partially prevented by addition of 100 microM-ATP. The binding of [3H]guanine nucleotides is selective, with approximately equipotent inhibition by GTP, GDP, and GMP-PNP (at 0.2--1.0 microM), but no inhibition by other nucleotides at 100 microM concentrations. The bindings sites for guanine nucleotides in brain membranes appear not to be associated with microtubules, since treatments that reduce [3H]colchicine binding by 65% have no effect on [3H]GTP binding. [3H]Guanine nucleotide binding is widely distributed in various organs, with highest levels in liver and brain and lowest levels in skeletal muscle. The characteristics of these binding sites in brain show specificity properties of sites that regulate neurotransmitter receptors and adenylate cyclase. 相似文献
9.
Robert Chicheportiche Janique Guiramand Jean Marc Kamenka Michel Ponchant† Jean Pierre Beaucourt† 《Journal of neurochemistry》1992,59(2):492-499
The binding properties of the 125I-labeled phencyclidine derivative N-[1-(3-[125I]iodophenyl)cyclohexyl]piperidine (3-[125I]iodo-PCP), a new ligand of the N-methyl-D-aspartate (NMDA)-gated ionic channel, were investigated. Association and dissociation kinetic curves of 3-[125I]iodo-PCP with rat brain homogenates were well described by two components. About 32% of the binding was of fast association and fast dissociation, and the remaining binding was of slow association and slow dissociation. Saturation curves of 3-[125I]iodo-PCP also were well described using two binding sites: one of a high affinity (KDH = 15.8 +/- 2.3 nM) and the other of a low affinity (KDL = 250 +/- 40 nM). 3-Iodo-PCP inhibited the binding of 3-[125I]iodo-PCP with inhibition curves that were well fitted by a two-site model. The binding constants (KiH, BmaxH; KiL, BmaxL) so obtained were close to those obtained in saturation experiments. Ligands of NMDA-gated ionic channels also inhibited the binding of 3-[125I]iodo-PCP with two constants, KiH and KiL. There was a very good correlation (r = 0.987) between the affinities of these ligands to bind to NMDA-gated ionic channels and their potencies to inhibit the binding of 3-[125I]iodo-PCP with a high affinity. Moreover, the regional distribution of the high-affinity binding of 3-[125I]-iodo-PCP paralleled that of tritiated N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). In contrast to that of [3H] TCP, the binding of 3-[125I]iodo-PCP to well-washed rat brain membranes was fast and insensitive to glutamate and glycine.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Abstract: [3 H]Dihydroergocryptine ([3 H]DHE) binds to a particulate preparation from Drosophila melanogaster heads at a level of 2.4 ± 0.4 pmol/mg protein, with an apparent dissociation constant of 2.0 ± 0.5 n M . The binding sites are inactivated by heat, pronase treatment, detergents, and sulfhydryl and disulfide reagents. [3 H]DHE binding is inhibited by low concentrations of serotonergic and α-adrenergic ligands. The specificity of the binding sites, as revealed by displacement studies, differs from that of [3 H]DHE binding sites in various vertebrate tissues. The [3 H]DHE binding sites may correspond to serotonergic receptors, and possibly, to additional classes of receptors for putative neurotransmitters in Drosophila . 相似文献
11.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain. 相似文献
12.
Jacques De Keyser Jean-Paul De Backer Guy Ebinger Georges Vauquelin 《Journal of neurochemistry》1989,53(5):1400-1404
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons. 相似文献
13.
M. Del Zompo S. Ruiu R. Maggio M. P. Piccardi G. U. Corsini 《Journal of neurochemistry》1990,54(6):1905-1910
Because 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPP+) appears to damage the dopaminergic neuron and cause neuronal death, we characterized [3H]MPP+ binding sites in mouse brain membranes. Among several compounds tested, debrisoquin [3,4-dihydro-2(1H)-isoquinolinecarboxamidine] and some analogues were able to antagonize [3H]MPP+ binding. Debrisoquin is able to block adrenergic transmission and inhibit the activity of monoamine oxidase A (MAO-A). We found a certain correlation between the ability of these agents to displace [3H]MPP+ from its binding sites and their capacity to inhibit MAO-A activity. These data and the finding of a higher number of [3H]MPP+ binding sites in human placenta compared to mouse brain suggest that these sites may correspond to MAO-A enzymes. Recently it has been demonstrated in human brain that neurons in regions rich in catecholamines are positive for MAO-A. Accordingly, we suggest MAO-A as a possible accumulation site of MPP+ within the dopaminergic neuron. We also indicate the chemical structural requirement associated with the best binding of debrisoquin analogues with [3H]MPP+ sites. It would be reasonable to test the effects of debrisoquin-like drugs able to pass the blood-brain barrier on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. 相似文献
14.
Rat hippocampal 5-hydroxytryptamine1A (5-HT1A) binding sites were solubilized with a yield of 34% using 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS, 10 mM) as detergent. Kinetic analyses of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) binding indicated that the 5-HT1A sites exhibit the same properties in the soluble form as in the membrane-bound form. Furthermore, a positive correlation (r = 0.988) was found between the respective pIC50 values of a series of agonists and antagonists to inhibit [3H]8-OH-DPAT binding to either soluble or membrane-bound 5-HT1A sites. Gel filtration through Sephacryl S-400 as well as chromatography on wheat germ agglutinin (WGA)-agarose did not affect the modulation by guanine nucleotides (5'-guanylylimidodiphosphate) of [3H]8-OH-DPAT binding which suggests that the 5-HT1A binding subunit is a glycoprotein tightly attached to a G protein even in its soluble form. The [3H]8-OH-DPAT binding material eluted from Sephacryl S-400 had an apparent molecular mass of 155 kilodaltons, as expected from a heterodimer with one binding subunit (approximately 60 kilodaltons) and one G protein (approximately 80 kilodaltons). Marked enrichment in 5-HT1A binding sites relative to other soluble proteins was found in the peak fractions eluted from Sephacryl S-400 (by sixfold) and WGA-agarose (by 26-fold) columns, suggesting that these chromatographic steps might be of interest for the purification of central 5-HT1A receptors. 相似文献
15.
Physicochemical Properties of Serotonin 5-HT3 Binding Sites Solubilized from Membranes of NG 108-15 Neuroblastoma-Glioma Cells 总被引:3,自引:3,他引:0
M.-C. Miquel M. B. Emerit F. J. Bolaños L. E. Schechter H. Gozlan M. Hamon 《Journal of neurochemistry》1990,55(5):1526-1536
Specific binding sites with pharmacological properties typical of serotonin 5-HT3 receptors were identified in membranes of the murine hybridoma cell line NG 108-15, using [3H]zacopride as a ligand. Optimal solubilization of these sites (yield, 50%) could be achieved using the detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) at 24 mM plus 0.5 M NaCl in 25 mM Tris-HCl, pH 7.4. Specific [3H]zacopride binding to soluble sites in the 100,000-g CHAPS extract was saturable and showed characteristics (Bmax = 425 +/- 81 fmol/mg of protein; KD = 0.19 +/- 0.02 nM) closely related to those of membrane-bound sites (Bmax = 932 +/- 183 fmol/mg of protein; KD = 0.60 +/- 0.03 nM). Determination of association (k+1 = 0.17 nM min-1) and dissociation (k-1 = 0.02 min-1) rate constants for the soluble sites gave a KD value of 0.12 nM, a result consistent with that calculated from saturation studies. As assessed from the displacement potencies (IC50) of 10 different drugs, the pharmacological profile of [3H]zacopride specific binding sites was essentially the same (r = 0.99) in the CHAPS-soluble extract and in cell membranes, although some increase in the affinity for 5-HT3 antagonists (zacopride, ICS 205-930, and MDL 72222) and decrease in the affinity for 5-HT3 agonists (2-methyl-5-hydroxytryptamine and phenylbiguanide) were noted for the soluble sites. Sucrose density gradient sedimentation of the CHAPS-soluble extract gave a Svedberg coefficient of 12S for the material with [3H]zacopride specific binding capacity. Chromatographic analyses using Sephacryl S-400 and wheat germ agglutinin-agarose columns indicated marked enrichment (by 2.5- and 10-fold, respectively) in [3H]zacopride specific binding activity in the corresponding eluates compared with the starting soluble extract, a finding suggesting that both steps are of potential interest for the partial purification of solubilized 5-HT3 receptors. Two soluble materials with apparent molecular masses of approximately 600 and approximately 36 kDa were found to bind [3H]zacopride specifically in the Sephacryl S-400 eluate. Interestingly, molecular mass determination by radiation inactivation of [3H]zacopride binding sites in frozen NG 108-15 cells gave a value of approximately 35 kDa. 相似文献
16.
Haruaki Ninomiya Reiko Fukunaga Takashi Taniguchi Motohatsu Fujiwara Shun Shimohama Masakuni Kameyama 《Journal of neurochemistry》1990,54(2):526-532
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal. 相似文献
17.
The binding of [125I]beta h-endorphin to rat brain membranes was investigated in the presence of GTP and guanylyl-5'-imidodiphosphate. In contrast to the binding of the mu-selective opioid agonist, [3H][D-Ala2,MePhe4,Glyol5]enkephalin, and the delta-selective opioid agonist, [3H][D-penicillamine2, D-penicillamine5]enkephalin, [125I]beta h-endorphin binding was not affected by GTP or guanylyl-5'-imidodiphosphate in a concentration-dependent manner in the absence of cations. However, in the presence of NaCl, the inclusion of either GTP or guanylyl-5'-imidodiphosphate resulted in a concentration-dependent inhibition of [125I]beta h-endorphin binding. This inhibition was significantly greater than the decrease in [125I]beta h-endorphin binding observed in the presence of sodium alone. Although GTP most potently inhibited [125I]beta h-endorphin binding in the presence of sodium, inhibition of [125I]beta h-endorphin binding by GTP was also observed in the presence of the monovalent cations lithium and potassium, but not the divalent cations magnesium, calcium, or manganese. The effect produced by GTP in the presence of NaCl was mimicked by GDP, but not by GMP or other nucleotides. Unlike [125I]beta h-endorphin, the binding of the putative sigma receptor agonist, (+)-[3H]SKF 10,047, was not significantly altered by GTP or guanylyl-5'-imidodiphosphate in the absence or presence of sodium. 相似文献
18.
Loredana Vesci Patrizia Tobia Nerina Corsico Edoardo Arrigoni Martelli Arduino Arduini 《Journal of neurochemistry》1995,64(6):2783-2791
Abstract: In the present study, we investigated the existence of a binding site for l -carnitine in the rat brain. In crude synaptic membranes, l -[3H]carnitine bound with relatively high affinity (KD = 281 nM) and in a saturable manner to a finite number (apparent Bmax value = 7.3 pmol/mg of protein) of binding sites. Binding was reversible and dependent on protein concentration, pH, ionic strength, and temperature. Kinetic studies revealed a Koff of 0.018 min?1 and a Kon of 0.187 × 10?3 min?1 nM?1. Binding was highest in spinal cord, followed by medulla oblongata-pons ≥ corpus striatum ≥ cerebellum = cerebral cortex = hippocampus = hypothalamus = olfactory bulb. l -[3H]Carnitine binding was stereoselective for the l -isomers of carnitine, propionylcarnitine, and acetylcarnitine. The most potent inhibitor of l -[3H]carnitine binding was l -carnitine followed by propionyl-l -carnitine. Acetyl-l -carnitine and isobutyryl-l -carnitine showed an affinity ~500-fold lower than that obtained for l -carnitine. The precursor γ-butyrobetaine had negligible activity at 0.1 mM. l -Carnitine binding to rat crude synaptic membrane preparation was not inhibited by neurotransmitters (GABA, glycine, glutamate, aspartate, acetylcholine, dopamine, norepinephrine, epinephrine, 5-hydroxytryptamine, histamine) at a final concentration of 0.1 mM. In addition, the binding of these neuroactive compounds to their receptors was not influenced by the presence of 0.1 mMl -carnitine. Finally, a subcellular fractionation study showed that synaptic vesicles contained the highest density of l -carnitine membrane binding sites whereas l -carnitine palmitoyltransferase activity was undetectable, thus excluding the possibility of the presence of an active site for carnitine palmitoyltransferase. This finding indicated that the localization of the l -[3H]carnitine binding site should be essentially presynaptic. 相似文献
19.
Mariagrazia Grilli A. Gilbert Wright Jr. Ingeborg Hanbauer 《Journal of neurochemistry》1991,56(6):2108-2115
[3H]Dopamine uptake and [3H]cocaine binding sites were studied in primary cultures of ventral mesencephalon from 14-day-old rat embryos. Specific binding sites for [3H]cocaine and [3H]mazindol were detected only in intact cell cultures of ventral mesencephalon, and were absent in sonicated, washed membranes prepared from these cell cultures. [3H]Cocaine was not taken up by the cells through an active transport process because [3H]cocaine binding occurred also at 4 degrees C. Moreover, the possibility of [3H]cocaine entering the cells by passive diffusion and ion trapping was also excluded because extensive washing failed to remove [3H]cocaine from the cells. [3H]Cocaine binding was reduced to 6% of control when cells were permeabilized with streptolysin O (0.2 U/ml, 5 min). Taken together, these results suggest that in cultured mesencephalic neurons, [3H]cocaine may enter the cell by passive diffusion and then be sequestered by a cytosolic compartment that is lost in the process of permeabilization or sonication and washing of membrane preparations. Permeabilization of cultured neurons failed to alter the storage of [3H]dopamine. When cells were permeabilized with streptolysin O (0.2 U/ml; 5 min) after [3H]dopamine was taken up, [3H]dopamine was retained by the cells and did not leak into the incubation medium, indicating that [3H]dopamine was stored in sites that could not pass through the perforated membranes. In contrast, [3H]dopamine uptake into already permeabilized cells was reduced by 33%, suggesting that a cytosolic protein that had leaked out may play a functional role in the uptake process. In contrast to striatal membrane preparations of adult rats, [3H]cocaine binding in intact mesencephalic cell cultures was Na+ independent.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Ontogeny of Receptor Binding Sites for [3 H]Glutamic Acid and [3 H]Kainic Acid in the Rat Cerebellum 总被引:1,自引:0,他引:1
The development of the specific binding sites for L-[3H]glutamic acid (KD = 370 nM) and for [3H]kainic acid (KD = 39 nM) was studied in the rat cerebellum. Specific binding at both sites remains low during the first week after birth but increases markedly during the second and third weeks after birth, when glutamatergic parallel fiber synaptogenesis occurs. The development of the kainate site lags behind that of the glutamate site, indicating their autonomy. 相似文献