首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

2.
The kinetics of cycling of the transferrin receptor in A431 human epidermoid-carcinoma cells was examined in the presence or absence of bound diferric transferrin. In order to investigate the properties of the receptor in the absence of transferrin, the cells were maintained in defined medium without transferrin. It was demonstrated that Fab fragments of a monoclonal anti-(transferrin receptor) antibody (OKT9) did not alter the binding of diferric 125I-transferrin to the receptor or change the accumulation of [59Fe]diferric transferrin by cells. OKT9 125I-Fab fragments were prepared and used as a probe for the function of the receptor. The first-order rate constants for endocytosis (0.16 +/- 0.02 min-1) and exocytosis (0.056 +/- 0.003 min-1) were found to be significantly lower for control cells than the corresponding rate constants for endocytosis (0.22 +/- 0.02 min-1) and exocytosis (0.065 +/- 0.004 min-1) measured for cells incubated with 1 microM-diferric transferrin (mean +/- S.D., n = 3). The cycling of the transferrin receptor is therefore regulated by diferric transferrin via an increase in both the rate of endocytosis and exocytosis. Examination of the accumulation of OKT9 125I-Fab fragments indicated that diferric transferrin caused a marked decrease in the amount of internalized 125I-Fab fragments associated with the cells after 60 min of incubation at 37 degrees C. Diferric transferrin therefore increases the efficiency of the release of internalized 125I-Fab fragments compared with cells incubated without diferric transferrin. These data indicate that transferrin regulates the sorting of the transferrin receptor at the cell surface and within endosomal membrane compartments.  相似文献   

3.
The incorporation of iron into human cells involves the binding of diferric transferrin to a specific cell surface receptor. We studied the process of endocytosis in K562, a human erythroid cell line, by using tetramethylrhodamine isothiocyanate-labeled transferrin (TRITC- transferrin) and fluorescein isothiocyanate-labeled Fab fragments of goat antireceptor IgG preparation (FITC-Fab-antitransferrin receptor antibody). Because the antireceptor antibody and transferrin bind to different sites on the transferrin receptor molecule it was possible to simultaneously and independently follow ligand and receptor. At 4 degrees C, the binding of TRITC-transferrin or FITC-Fab antitransferrin receptor antibody exhibited diffuse membrane fluorescence. At 20 degrees C, the binding of TRITC-transferrin was followed by the rapid formation of aggregates. However, the FITC-Fab antitransferrin receptor did not show similar aggregation at 20 degrees C unless transferrin was present. In the presence of transferrin, the FITC-Fab antitransferrin receptor antibody formed aggregates at the same sites and within the same time period as TRITC transferrin, indicating co-migration. Although the diffuse surface staining of either label was removed by proteolysis, the larger aggregates were not susceptible to enzyme degradation, indicating that they were intracellular. The internal location of the aggregates was also demonstrated using permeabilized cells that had been preincubated with transferrin and fixed with 4% paraformaldehyde. These cells showed aggregated receptor in the interior of the cell when reacted with fluorescein-labeled antibody to the receptor. This indicated that the transferrin and the transferrin receptor co-internalize and migrate to the same structures within the cell.  相似文献   

4.
The parameters regulating the internalization and recycling of transferrin-specific receptors were determined in guinea pig leukemic B lymphocytes, in the absence or presence of ligand. We show that after the cells were purified, 45-56% of the total receptors were on the cell surface. In the absence of transferrin, unoccupied receptors are quickly internalized (rate constant, 0.12 min-1) whereas their recycling is much slower (rate constant, 0.026 min-1). This difference between endocytosis and recycling rates leads to a balanced receptor distribution with only 22% of the total receptors outside after incubation of the cells for 20-30 min at 37 degrees C. The internalization rate of occupied receptors, measured in the presence of transferrin is faster (rate constant, 0.21 min-1) than that of unoccupied receptors calculated in the absence of transferrin (0.12 min-1; see above). On the other hand, mere binding of transferrin to its receptor, without internalization, arrested by cytoplasm acidification, is sufficient to induce a large increase (by a factor of seven) in the recycling rate of unoccupied internal receptors from 0.026 min-1 to 0.17 min-1. Thus, in these lymphocytes, transferrin mobilizes internal receptors by modifying the kinetic rates of internalization and recycling, leading to a new equilibrium between external and internal receptors.  相似文献   

5.
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present investigation describes the presence of a cytoplasmic Tf-free Fe pool which is detectable only when cells are detached from their culture dishes at low temperature, after initial incorporation of diferric transferrin at 37 degrees C. This cellular iron pool was greatly reduced if incubation temperatures were maintained at 37 degrees C or if cells were treated with pronase. Human melanoma cells (SK-MEL-28) in culture were prelabeled by incubation with human 125I-59Fe-transferrin for 2 h, washed, and reincubated at 4 degrees C or 37 degrees C in balanced salt solution in the presence or absence of pronase. The cells were then mechanically detached from the plates and separated into "internalized" and supernatant fractions by centrifugation. Approximately 90% of cellular 59Fe and 20% of 125I-Tf remained internalized when this reincubation procedure was carried out in balanced salt solution at 37 degrees C. However, at 4 degrees C, cellular internalized iron was reduced to approximately 50% of the initial value. The release of this component of cellular 59Fe (approximately 40% of total cell 59Fe) at 4 degrees C was completely inhibited in the presence of pronase and other general proteinases at 4 degrees C and at 37 degrees C, without affecting internalized transferrin levels. Similar results were obtained in fibroblasts and hepatoma cells, indicating that this phenomenon is not unique to melanoma cells. The characterization of this Tf-free cellular Fe pool which is detectable at low temperature may yield valuable insights into the metabolic fate of iron following its transport across the membrane of the endocytotic vesicle.  相似文献   

6.
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell.  相似文献   

7.
The binding and uptake of rat and human transferrin by isolated rat seminiferous tubules was studied. During the isolation and incubation of the tubules, the blood-testis barrier remained intact. Iron-saturated and iron-free (apo-) transferrin use the same binding sites on the surface of the tubules, but the dissociation constant is about two times higher for apotransferrin than for iron-saturated transferrin. The affinity of the receptors is equal for rat and human transferrin, but human transferrin binds to more surface binding sites (2.6 X 10(10) per 10 cm tubule length) than rat transferrin (1.1 X 10(10) per 10 cm tubule length) at 0 degrees C. At 33 degrees C equal numbers of human and rat transferrin molecules are taken up (about 8 X 10(10)) per 10 cm tubule length. The quantitative difference between 0 degrees C and 33 degrees C is caused by the fact that at 33 degrees C receptor-mediated endocytosis and recycling occur. As a consequence, both surface and intracellular transferrin receptors are detected at 33 degrees C. The dissociation constants are not temperature-dependent.  相似文献   

8.
Receptor-mediated transport of heme by hemopexin in vivo and in vitro results in catabolism of heme but not the protein, suggesting that intact apohemopexin recycles from cells. However, until now, the intracellular transport of hemopexin by receptor-mediated endocytosis remained to be established. Biochemical studies on cultured human HepG2 and mouse Hepa hepatoma cells demonstrate that hemopexin is transported to an intracellular location and, after endocytosis, is subsequently returned intact to the medium. During incubation at 37 degrees C, hemopexin accumulated intracellularly for ca. 15 min before reaching a plateau while surface binding was saturated by 5 min. No internalization of ligand took place during incubation at 4 degrees C. These and other data suggest that hemopexin receptors recycle, and furthermore, incubation with monensin significantly inhibits the amount of cell associated of heme-[125I]hemopexin during short-term incubation at 37 degrees C, consistent with a block in receptor recycling. Ammonium chloride and methylamine were less inhibitory. Electron microscopic autoradiography of heme-[125I]hemopexin showed the presence of hemopexin in vesicles of the classical pathway of endocytosis in human HepG2 hepatoma cells, confirming the internalization of hemopexin. Colloidal gold-conjugated hemopexin and electron microscopy showed that hemopexin bound to receptors at 4 degrees C is distributed initially over the entire cell surface, including microvilli and coated pits. After incubation at 37 degrees C, hemopexin-gold is located intracellularly in coated vesicles and then in small endosomes and multivesicular bodies. Colocalization of hemopexin and transferrin intracellularly was shown in two ways. Radioiodinated hemopexin was observed in the same subcellular compartment as horseradish peroxidase conjugates of transferrin using the diaminobenzidine-induced density shift assay. In addition, colloidal gold derivatives of heme-hemopexin and diferric transferrin were found together in coated pits, coated vesicles, endosomes and multivesicular bodies. Therefore, hemopexin and transferrin act by a similar receptor-mediated mechanism in which the transport protein recycles after endocytosis from the cell to undergo further rounds of intracellular transport.  相似文献   

9.
Receptor-mediated endocytosis of transferrin in K562 cells   总被引:53,自引:0,他引:53  
Human diferric transferrin binds to the surface of K562 cells, a human leukemic cell line. There are about 1.6 X 10(5) binding sites per cell surface, exhibiting a KD of about 10(-9) M. Upon warming cells to 37 degrees C there is a rapid increase in uptake to a steady state level of twice that obtained at 0 degree C. This is accounted for by internalization of the ligand as shown by the development of resistance to either acid wash or protease treatment of the ligand-cell association. After a minimum residency time of 4-5 min, undegraded transferrin is released from the cell. Internalization is rapid but is dependent upon cell surface occupancy; at occupancies of 20% or greater the rate coefficient is maximal at about 0.1-0.2 min-1. In the absence of externally added ligand only 50% of the internalized transferrin completes the cycle and is released to the medium with a rate coefficient of 0.05 min-1. The remaining transferrin can be released from the cell only by the addition of ligand, suggesting a tight coupling between cell surface binding, internalization, and release of internalized ligand. There is a loss of cell surface-binding capacity that accompanies transferrin internalization. At low (less than 50%) occupancy this loss is monotonic with the extent of internalization. Even at saturating levels of transferrin, the loss of surface receptors upon internalization never exceeds 60-70% of the initial binding capacity. This suggests that receptors enter the cell with ligand but are replaced so as to maintain a constant, albeit reduced, receptor number on the cell surface. In the absence of ligand, the cell surface receptor number returns at 37 degrees C. Neither sodium azide nor NH4Cl blocks internalization of ligand. However, they both prevent the release of transferrin from the cell thus halting the transferrin cycle. Excess ligand can overcome the block due to NH4Cl but not azide although the cycle is markedly slower. Iron is delivered to these cells by transferrin at 37 degrees C with a rate coefficient of 0.15 to 0.2 min-1. The iron is released from the transferrin and the majority is found in intracellular ferritin. There is a large internal receptor pool comprising 70 to 80% of the total cell receptors and this may be involved in maintaining the steady state iron uptake.  相似文献   

10.
The function of intracellular asialoglycoprotein receptors during the endocytosis of asialo-orosomucoid in isolated hepatocytes was assessed by following changes in the occupancy of intracellular receptors. Unoccupied total cellular (inside and surface) or surface receptors were quantified at 0 degrees C by the binding of 125I-asialo-orosomucoid in the presence or absence, respectively, of digitonin. Freshly isolated cells had about 17% of their total receptors on the surface. After incubation at 37 degrees C, the receptor distribution changed to 25 to 50% on the cell surface and 50 to 75% inside the cell. At 37 degrees C, the average total number of receptors/cell was 4.5 x 10(5). Dissociation constants, determined from equilibrium binding studies in the presence or absence of digitonin to assess total or surface receptors, were identical (5.4 +/- 1.4 and 5.6 +/- 1.1 x 10(-9) M, respectively). In the presence of asialo-orosomucoid at 37 degrees C, there was both a time- and a concentration-dependent decrease in surface and intracellular receptor activity. This receptor activity decrease was reversed by removing asialo-orosomucoid from the medium or by washing the digitonin-permeabilized cells with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid prior to quantification of receptor activity. Within 1 to 2 h in the presence of excess asialo-orosomucoid, a steady state was attained in which approximately 70% of the intracellular receptors were occupied. The kinetics of receptor activity recovery on the cell surface after internalization of a pulse of ligand is different than the rate of recovery of internal receptor activity. The results suggest that all of the internal asialoglycoprotein receptors are functional and participate during endocytosis. Internal receptors may be functionally equivalent to those on the surface or they may serve a reservoir or routing function for internalized ligand.  相似文献   

11.
We used quantitative fluorescence microscopy and fluorescence photobleaching recovery techniques to investigate the translational movement, cell surface expression, and endocytosis of transferrin receptors in K562 human erythroleukemia cells. Receptors were labeled with fluorescein-conjugated transferrin (FITC-Tf). Coordinated decreases in surface fluorescence counts, the photobleachig parameter K, and transferrin receptor fractional mobility were observed as FITC-Tf was cleared from the cell surface by receptor-mediated endocytosis. Based on the kinetics of decrease in these parameters, first order rate constants for FITC-Tf uptake at 37°C and 21°C were calculated to be 0.10-0.15 min?1 and 0.02–0.03 min, respectively. K562 cells were treated with colchicine or vinblastine to investigate the role of microtubules in transferrin receptor movement and endocytosis. Treatment of cells for 1 hr with a microtubule inhibitor prevented transferrin receptor endocytosis but had no effect on the translational mobility of cell surface receptors. In contrast, drug treatment for 3 hr caused translational immobilization of cell surface receptors as well as inhibition of endocytosis. These effects were not produced by β-lumicolchicine, an inactive colchicine analog, or by cytochalasin, a microfilament inhibitor. The effect of microtuble inhibitors on transferrin receptor mobility was reversed by pretreating cells with taxol, a microtubule-stabilizing agent. Microtubule inhibitors had no effect on the translational mobility of cell surface glycophorins or phospholipids, indicating that intact microtubules were not required for translational movement of these molecules. We conclude that the translational movement of cell surface transferrin receptors is directed by a subpopulation of relatively drug-resistant microtubules. In contrast, transferrin receptor endocytosis depends on a subpopulation of microtubules that is relatively sensitive to the action of inhibitors. These results appear to demonstrate at least two functional roles for microtubules in receptor-mediated transferrin uptake in K562 cells. © 1994 Wiley-Liss, Inc.  相似文献   

12.
When transferrin receptors of human erythroleukemic cells were pulse-labeled with [35S]methionine and then chased in the absence of radioactive precursor, the first detectable immunoprecipitable form of the receptor had a molecular mass of 85 kDa. This form of the receptor was converted to the mature form of 93 kDa with a half-time of about 40-60 min. Both the immature (85 kDa) and mature (93 kDa) receptors associated as dimers, the native form of the receptor. The 85-kDa, as well as the 93-kDa, receptors bound to a monoclonal antibody raised against the transferrin receptor or to transferrin-Sepharose. In order to determine whether glycosylation was necessary for ligand binding, purified receptors were isolated from cells grown in the presence of tunicamycin. When K562 cells were grown in the presence of tunicamycin, an 80-kDa nonglycosylated form of the receptor was synthesized. This nonglycosylated receptor was also capable of dimer formation; however, much less of it reached the cell surface than the fully glycosylated form, although both untreated and tunicamycin-grown cells appeared to synthesize transferrin receptors at similar rates. Although the number of receptor molecules/cell was similar in control and tunicamycin-treated cells, the nonglycosylated receptors exhibited a much lower affinity for transferrin than those of untreated cells; in contrast, when receptors were purified by immunoprecipitation and digested with bacterial alkaline phosphatase, no difference was observed between the affinity of these receptors and undigested immunoprecipitated receptors. These results suggest that glycosylation is not necessary for specific binding of transferrin to its receptor, but the affinity of this binding can be influenced greatly by the presence or absence of carbohydrate residues.  相似文献   

13.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

14.
Incubation of reticulocytes with EDTA, EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid) and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), but not with desferrioxamine B, at temperatures above 20 degrees C resulted in the loss of their ability to take up iron in a temperature-, time- and concentration-dependent manner. No inhibition of transferrin or iron uptake occurred if the incubations were performed at 20 degrees C or below. At higher temperatures, the inhibition was attributable to loss of functional transferrin receptors, not to altered affinity or endocytosis of the remaining receptors. The changes could not be reversed by washing the cells and reincubation in the presence of Ca2+, Mg2+ or Zn2+. However, they could be completely prevented by performing the initial incubation with chelators in the presence of diferric transferrin and partly prevented by the use of apotransferrin. Incubation with the chelators resulted in much less reduction in the ability of the cells to bind anti-transferrin receptor immunoglobulin than transferrin. The fate of the receptor was studied by polyacrylamide gel electrophoresis of reticulocyte membrane proteins before and after extraction with Triton X-100, and by immunological staining of Western blots for the transferrin receptor. Treatment of the cells with EDTA led to a loss of the ability of Triton X-100 to solubilize the receptor and its retention in the Triton-insoluble cytoskeletal matrix of the cells. It is concluded that incubation of reticulocytes with the chelators at temperatures above 20 degrees C causes an altered interaction of the transferrin receptor with the cytoskeleton. This change, which is probably due to chelation of Ca2+ in the cell membrane, is accompanied by an irreversible loss of the receptor's ability to bind transferrin.  相似文献   

15.
C R Hopkins 《Cell》1985,40(1):199-208
Using gold complexes stabilized with a monoclonal antibody specific for the human transferrin receptor, the distribution of transferrin receptors on the surfaces of human epidermoid carcinoma A431 cells has been mapped at high resolution. On prefixed cells and cells incubated at 5 degrees C, the receptors are predominantly within and around clathrin-coated microdomains near the free cell margin. By preincubating the cells with saturating concentrations of free antibody at 5 degrees C and warming them to 37 degrees C in the presence of the gold complexes, the appearance of new receptors in the membrane has been followed. The majority first appear near the free cell margin and then move centripetally. At first, they are monodisperse, but as they move toward the site of internalization they form loose aggregates. Within the immediate vicinity of the clathrin-coated microdomains the migrating receptors form closely packed, ordered aggregates. These observations indicate recycling transferrin receptors move to their site of internalization without cross-linking.  相似文献   

16.
Treatment of two human leukemia cell lines with 1.25% dimethyl sulfoxide at 37 degrees C results in a rapid increase in the number of transferrin receptors on the cell surface detected by fluorescein-labeled anti-transferrin receptor antibodies. Both HL-60 cells, a human myeloid cell line, and K562 cells, a human erythroid-myeloid cell line, showed a 25-65% increase in cell surface transferrin binding in parallel experiments. Scatchard plot analysis of the data indicates that the number of receptors increases while the affinity of transferrin for the receptor remains the same. This rapid increase in the number of receptors at the cell surface appears to be due to a slowing of endocytosis rather than an increase in externalization of the receptor.  相似文献   

17.
The role of high-affinity specific transferrin receptors and low-affinity, non-saturable processes in the uptake of transferrin and iron by hepatocytes was investigated using fetal and adult rat hepatocytes in primary monolayer culture, rat transferrin, rat serum albumin and a rabbit anti-rat transferrin receptor antibody. The intracellular uptake of transferrin and iron occurred by saturable and non-saturable mechanisms. Treatment of the cells with the antibody almost completely eliminated the saturable uptake of iron but had little effect on the non-saturable process. Addition of albumin to the incubation medium reduced the endocytosis of transferrin by the cells but had no significant effect on the intracellular accumulation of iron. The maximum effect of rat serum albumin was observed at concentrations of 3 mg/ml and above. At a low incubation concentration of transferrin (0.5 microM), the presence of both rat albumin and the antibody decreased the rate of iron uptake by the cells to about 15% of the value found in their absence, but to only 40% when the diferric transferrin concentration was 5 microM. These results confirm that the uptake of transferrin-bound iron by both fetal and adult rat hepatocytes in culture occurs by a specific, receptor-mediated process and a low-affinity, non-saturable process. The low-affinity process increases in relative importance as the iron-transferrin concentration is raised.  相似文献   

18.
Sheep reticulocytes from phlebotomized animals have a total transferrin binding potential that may exceed by an order of magnitude the surface binding capacity. Steady state uptake of transferrin at 37 degrees C is generally less than 50% of the total transferrin binding capacity. During long-term incubation of the reticulocytes, all transferrin binding ability is lost, the ability to internalize being lost most rapidly. The loss in ability to bind transferrin during long-term incubation is independent of the number of surface transferrin binding sites, since removal of surface receptors with pronase does not affect the rate of loss of the internal pool of receptors during long-term incubation. Moreover, after removing surface receptors with pronase, only a fraction of the original number of receptors is restored to the surface, despite the presence of a large pool of internal receptors. These data suggest that only a fraction of the internal pool of receptors is capable of recycling to the cell surface in sheep reticulocytes.  相似文献   

19.
Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.  相似文献   

20.
The binding and subsequent intracellular processing of transferrin and transferrin receptors was studied in A431 cells using 125I-transferrin and a monoclonal antibody to the receptor (ATR) labeled with 125I and gold colloid. Using 125I-transferrin we have shown that, whereas at 37 degrees C uptake proceeded linearly for up to 60 min, most of the ligand that was bound was internalized and then rapidly returned to the incubation medium undegraded. At 37 degrees C, the intracellular half- life of the most rapidly recycled transferrin was 7.5 min. 125I-ATR displayed the same kinetics of uptake but following its internalization at 37 degrees C, it was partially degraded. At 22 degrees C and below, the intracellular degradation of 125I-ATR was selectively inhibited and as a result it accumulated intracellularly. Electron microscopy of conventional thin sections and of whole-cell mounts was used to follow the uptake and processing of transferrin receptors labeled with ATR- gold colloid complexes. Using a pulse-chase protocol, the intracellular pathway followed by internalized ATR gold-receptor complexes was outlined in detail. Within 5 min at 22 degrees C the internalized complexes were transferred from coated pits on the cell surface to a system of narrow, branching cisternae within the peripheral cytoplasm. By 15 min they reached larger, more dilated elements that, in thin section, appeared as irregular profiles containing small (30-50-nm diam) vesicles. By 30 min, the gold complexes were located predominantly within typical spherical multivesicular bodies lying in the peripheral cytoplasm, and by 40-60 min, they reached a system of cisternal and multivesicular body elements in the juxtanuclear area. At 22 degrees C, no other compartments became labeled but if they were warmed to 37 degrees C the gold complexes were transferred to lysosome- like elements. Extracting ATR-gold complexes with Triton X after a 30- min chase at 22 degrees C and purifying them on Sepharose-transferrin indicated that the internalized complexes remained bound to the transferrin receptor during their intracellular processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号