首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Participation of nuclear genes in chloroplast gene expression   总被引:33,自引:0,他引:33  
  相似文献   

2.
3.
Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.  相似文献   

4.
Complete structure of the chloroplast genome of Arabidopsis thaliana.   总被引:7,自引:0,他引:7  
The complete nucleotide sequence of the chloroplast genome of Arabidopsis thaliana has been determined. The genome as a circular DNA composed of 154,478 bp containing a pair of inverted repeats of 26,264 bp, which are separated by small and large single copy regions of 17,780 bp and 84,170 bp, respectively. A total of 87 potential protein-coding genes including 8 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acid species were assigned to the genome on the basis of similarity to the chloroplast genes previously reported for other species. The translated amino acid sequences from respective potential protein-coding genes showed 63.9% to 100% sequence similarity to those of the corresponding genes in the chloroplast genome of Nicotiana tabacum, indicating the occurrence of significant diversity in the chloroplast genes between two dicot plants. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

5.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

6.
Complete structure of the chloroplast genome of a legume, Lotus japonicus.   总被引:4,自引:0,他引:4  
The nucleotide sequence of the entire chloroplast genome (150,519 bp) of a legume, Lotus japonicus, has been determined. The circular double-stranded DNA contains a pair of inverted repeats of 25,156 bp which are separated by a small and a large single copy region of 18,271 bp and 81,936 bp, respectively. A total of 84 predicted protein-coding genes including 7 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acids species were assigned on the genome based on similarity to genes previously identified in other chloroplasts. All the predicted genes were conserved among dicot plants except that rpl22, a gene encoding chloroplast ribosomal protein CL22, was missing in L. japonicus. Inversion of a 51-kb segment spanning rbcL to rpsl6 (positions 5161-56,176) in the large single copy region was observed in the chloroplast genome of L. japonicus. The sequence data and gene information are available on our World Wide Web database at http://www.kazusa.or.jp/en/plant/database.html.  相似文献   

7.
The gene for the large subunit (LS) of ribulose-1,5,-bisphosphate carboxylase of Euglena gracilis Z chloroplast DNA has been mapped by heterologous hybridization with DNA restriction fragments containing internal sequences from the Zea mays and Chlamydomonas reinhardii LS genes. The Euglena LS gene which has the same polarity as the Euglena rRNA genes has been located with respect to Pst I, Pvu I, and HindIII sites within the Eco RI fragment Eco A. The region of Euglena chloroplast DNA complementary to an 887 bp internal fragment from the Chlamydomonas chloroplast LS gene is interrupted by a 0.5-1.1 kbp non-complementary sequence. This is the first chloroplast protein gene located on the Euglena genome, and the first evidence for an intervening sequence within any chloroplast protein gene.  相似文献   

8.
9.
10.
R F Troxler  F Zhang  J Hu    L Bogorad 《Plant physiology》1994,104(2):753-759
Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae.  相似文献   

11.
12.
The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane in eukaryotes, the plasma membrane in bacteria and the thylakoid membrane in chloroplasts. In higher plants two different SRP-dependent mechanisms have been identified: one post-translational for proteins imported to the chloroplast and one co-translational for proteins encoded by the plastid genome. The post-translational chloroplast SRP (cpSRP) consists of the protein subunits cpSRP54 and cpSRP43. An RNA component has not been identified and does not seem to be required for the post-translational cpSRP. The co-translational mechanism is known to involve cpSRP54, but an RNA component has not yet been identified. Several chloroplast genomes have been sequenced recently, making a phylogenetically broad computational search for cpSRP RNA possible. We have analysed chloroplast genomes from 27 organisms. In higher plant chloroplasts, no SRP RNA genes were identified. However, eight plastids from red algae and Chlorophyta were found to contain an SRP RNA gene. These results suggest that SRP RNA forms a complex in these plastids with cpSRP54, reminiscent of the eubacterial SRP.  相似文献   

13.
Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas.  相似文献   

14.
One of the most complicated remaining problems of molecular-phylogenetic analysis is choosing an appropriate genome region. In an ideal case, such a region should have two specific properties: (i) results of analysis using this region should be similar to the results of multigene analysis using the maximal number of regions; (ii) this region should be arranged compactly and be significantly shorter than the multigene set. The second condition is necessary to facilitate sequencing and extension of taxons under analysis, the number of which is also crucial for molecular phylogenetic analysis. Such regions have been revealed for some groups of animals and have been designated as "lucky genes". We have carried out a computational experiment on analysis of 41 complete chloroplast genomes of flowering plants aimed at searching for a "lucky gene" for reconstruction of their phylogeny. It is shown that the phylogenetic tree inferred from a combination of translated nucleotide sequences of genes encoding subunits of plastid RNA polymerase is closest to the tree constructed using all protein coding sites of the chloroplast genome. The only node for which a contradiction is observed is unstable according to the different type analyses. For all the other genes or their combinations, the coincidence is significantly worse. The RNA polymerase genes are compactly arranged in the genome and are fourfold shorter than the total length of protein coding genes used for phylogenetic analysis. The combination of all necessary features makes this group of genes main candidates for the role of "lucky gene" in studying phylogeny of flowering plants.  相似文献   

15.
Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots.  相似文献   

16.
One major lineage of green plants, the Chlorophyta, is represented by the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The Prasinophyceae occupies the most basal position in the Chlorophyta, but the branching order of the Ulvophyceae, Trebouxiophyceae, and Chlorophyceae remains unresolved. The chloroplast genome sequences currently available for representatives of three chlorophyte classes have revealed that this genome is highly plastic, with Chlamydomonas (Chlorophyceae) and Chlorella (Trebouxiophyceae) showing fewer ancestral features than Nephroselmis (Prasinophyceae). We report the 195,867-bp chloroplast DNA (cpDNA) sequence of Pseudendoclonium akinetum (Ulvophyceae), a member of the class that has not been previously examined for detailed cpDNA analysis. This genome shares common evolutionary trends with its Chlorella and Chlamydomonas homologs. The gene content, number of ancestral gene clusters, and abundance of short dispersed repeats in Pseudendoclonium cpDNA are intermediate between those observed for Chlorella and Chlamydomonas cpDNAs. Although Pseudendoclonium cpDNA features a large inverted repeat, its quadripartite structure is unusual in displaying an rRNA operon transcribed toward the large single-copy (LSC) region and a small single-copy region containing 14 genes that are normally found in the LSC region. Twenty-seven group I introns lie in nine genes and fall within four subgroups (IA1, IA2, IA3, and IB); 19 encode putative homing endonucleases, and 7 have homologs at identical insertion sites in other chlorophyte or streptophyte organelle genomes. The high similarity observed among the 14 IA1 and 7 IA2 introns and their encoded endonucleases suggests that many introns arose from intragenomic proliferation of a few founding introns in the lineage leading to Pseudendoclonium. Interestingly, one intron (in atpA) and some of the dispersed repeats also reside in Pseudendoclonium mitochondria, providing strong evidence for interorganellar lateral transfer of these genetic elements. Phylogenetic analyses of 58 cpDNA-encoded proteins and genes support the hypothesis that the Ulvophyceae is sister to the Trebouxiophyceae but cannot eliminate the hypothesis that the Ulvophyceae is sister to the Chlorophyceae. We favor the latter hypothesis because it is strongly supported by phylogenetic analyses of gene order data and by independent structural evidence based on shared gene losses and rearrangement break points within ancestrally conserved gene clusters.  相似文献   

17.
18.
Ueda M  Fujimoto M  Arimura S  Murata J  Tsutsumi N  Kadowaki K 《Gene》2007,402(1-2):51-56
Gene transfer events from organelle genomes (mitochondria and chloroplasts in plants) to the nuclear genome are important processes in the evolution of the eukaryotic cell. It is highly likely that the gene transfer event is still an ongoing process in higher plant mitochondria and chloroplasts. The number and order of genes encoded in the chloroplast genome of higher plants are highly conserved. Recently, several exceptional cases of gene loss from the chloroplast genome have been discovered as the number of complete chloroplast genome sequences has increased. The Populus chloroplast genome has lost the rpl32 gene, while the corresponding the chloroplast rpl32 (cp rpl32) gene has been identified in the nuclear genome. Nuclear genes transferred from the chloroplast genome need to gain a sequence that encodes a transit peptide. Here, we revealed that the nuclear cp rpl32 gene has acquired the exon sequence, which is highly homologous to a transit peptide derived from the chloroplast Cu-Zn superoxide dismutase (cp sod-1) gene. The cp rpl32 gene has acquired the sequence that encodes not only for the transit peptide, but also for the conserved N-terminal portion of the mature SOD protein from the cp sod-1 gene, suggesting the occurrence of DNA sequence duplication. Unlike cp SOD-1, cp RPL32 did not show biased localization in the chloroplasts. This difference may be caused by mutations accumulated in the sequence of the SOD domain on the cp rpl32 gene. We provide new insight into the fate of the inherent sequence derived from a transit peptide.  相似文献   

19.
Intron-binding proteins in eukaryotic organelles are mainly encoded by the nuclear genome and are thought to promote the maturation of precursor RNAs. Here, we present a biochemical approach that enable the isolation of a novel nuclear-encoded protein from Chlamydomonas reinhardtii showing specific binding properties to organelle group II intron RNA. Using FPLC chromatography of chloroplast protein extracts, a 61-kDa RNA-binding protein was isolated and then tentatively identified by mass spectrometry as the chloroplast heat shock protein Cpn60. Heterologous Cpn60 protein was used in RNA protein gel mobility shift assays and revealed that the ATPase domains of Cpn60 mediates the specific binding of two group II intron RNAs, derived from the homologous chloroplast psaA gene and the heterologous mitochondrial LSU rRNA gene. The function of Cpn60 as a general organelle splicing factor is discussed.  相似文献   

20.
Chlamydomonas reinhardtii is a model species of algae for studies on the circadian clock. Previously, we isolated a series of mutants showing defects in the circadian rhythm of a luciferase reporter introduced into the chloroplast genome, and identified the genes responsible for the defective circadian rhythm. However, we were unable to identify the gene responsible for the defective circadian rhythm of the rhythm of chloroplast 97 (roc97) mutant because of a large genomic deletion. Here, we identified the gene responsible for the roc97 mutation through a genetic complementation study. This gene encodes a protein that is homologous to the subunit of N-terminal acetyltransferase (NAT) which catalyzes N-terminal acetylation of proteins. Our results provide the first example of involvement of the protein N-terminal acetyltransferase in the circadian rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号