首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice   总被引:18,自引:0,他引:18  
Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.  相似文献   

2.
Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin −/− mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin −/− mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin −/− mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin −/− mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin −/− striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.  相似文献   

3.
Recessively inherited loss-of-function mutations in the parkin , DJ-1 , or PINK1 gene are linked to familial cases of early-onset Parkinson's diseases (PD), and heterozygous mutations are associated with increased incidence of late-onset PD. We previously reported that single knockout mice lacking Parkin, DJ-1, or PINK1 exhibited no nigral degeneration, even though evoked dopamine release from nigrostriatal terminals was reduced and striatal synaptic plasticity was impaired. In this study, we tested whether inactivation of all three recessive PD genes, each of which was required for nigral neuron survival in the aging human brain, resulted in nigral degeneration during the lifespan of mice. Surprisingly, we found that triple knockout mice lacking Parkin, DJ-1, and PINK1 have normal morphology and numbers of dopaminergic and noradrenergic neurons in the substantia nigra and locus coeruleus, respectively, at the ages of 3, 16, and 24 months. Interestingly, levels of striatal dopamine in triple knockout mice were normal at 16 months of age but increased at 24 months. These results demonstrate that inactivation of all three recessive PD genes is insufficient to cause significant nigral degeneration within the lifespan of mice, suggesting that these genes may be protective rather than essential for the survival of dopaminergic neurons during the aging process. These findings also support the notion that mammalian Parkin and PINK1 may function in the same genetic pathway as in Drosophila .  相似文献   

4.
Young parkin null (pk-/-) mice have subtle abnormalities of behaviour, dopamine (DA) neurotransmission and free radical production, but no massive loss of DA neurons. We investigated whether these findings are maintained while ageing. Pk-/- mice have reduced life span and age-related reduced exploratory behaviour, abnormal walking and posture, and behaviours similar to those of early Parkinson's disease (PD), reduced number of nigrostriatal DA neurons and proapoptotic shifts in the survival/death proteins in midbrain and striatum. Contrary to young pk-/- animals 24-month-old pk-/- mice do not have compensatory elevation of GSH in striatum, glutathione reductase (GR) and glutathione peroxidase (GPx) activities are increased and catalase unchanged. Aged pk-/- mice accumulate high levels of tau and fail to up-regulate CHIP and HSP70. Our results suggest that aged pk-/- mice lack of the compensatory mechanisms that maintain a relatively normal DA function in early adulthood. This study could help to explain the effects of ageing in patients with genetic risks for Parkinson's disease.  相似文献   

5.
Septin 5, a parkin substrate, is a vesicle- and membrane-associated protein that plays a significant role in inhibiting exocytosis. The regulatory function of Septin 5 in dopaminergic (DAergic) neurons of substantia nigra (SN), maintained at relatively low levels, has not yet been delineated. As loss of function mutations of parkin are the principal cause of a familial Parkinson's disease, a prevailing hypothesis is that the loss of parkin activity results in accumulation of Septin 5 which confers neuron-specific toxicity in SN-DAergic neurons. In vitro and in vivo models were used to support this hypothesis. In our well-characterized DAergic SN4741 cell model, acute accumulation of elevated levels of Septin 5, but not synphilin-1 (another parkin substrate), resulted in cytotoxic cell death that was markedly reduced by parkin co-transfection. A transgenic mouse model expressing a dominant negative parkin mutant accumulated moderate levels of Septin 5 in SN-DAergic neurons. These mice acquired a progressive l-DOPA responsive motor dysfunction that developed despite a 25% higher than normal level of striatal dopamine (DA) and no apparent loss of DAergic neurons. The phenotype of this animal, increased striatal dopamine and reduced motor function, was similar to that observed in parkin knockout animals, suggesting a common DAergic alteration. These data suggest that a threshold level of Septin 5 accumulation is required for DAergic cell loss and that l-DOPA-responsive motor deficits can occur even in the presence of elevated DA.  相似文献   

6.
In Parkinson's disease the progressive loss of nigrostriatal dopamine neurons leads to striatal dopamine deficiency and correlates with the severity of parkinsonian disability. The findings concerning dopamine receptors both in vitro and in vivo are not consistent, possibly reflecting differences in patient populations, but the presynaptic defect in dopaminergic neurotransmission is greater than that seen in postsynaptic receptor binding studies. The cholinergic neurons in the extrapyramidal nuclei are relatively well preserved, but subcortico-cortical and -hippocampal cholinergic neurons degenerate in relation to the degree of dementia. The decreased GABA receptor binding in the parkinsonian substantia nigra possibly reflects the loss of nigral dopamine neurons, since nigral GABA receptors are located on these neurons. Of the various neuropeptides, the concentration of met- and leu-enkephalin seems to be reduced in the striatum. In the substantia nigra the concentration of substance P decreases, together with the met-enkephalin and cholecystokinin levels. The concentration of somatostatin decreases in the frontal cortex and hippocampus of demented patients. With the exception of the association between cortical somatostatin deficiency and intellectual deterioration, the role of the neuropeptides in the pathophysiology and clinical features of Parkinson's disease are not yet fully understood.  相似文献   

7.
Dysfunction of dopaminergic neurons may contribute to motor impairment in Huntington's disease. Here, we study the role of brain-derived neurotrophic factor (BDNF) in alterations of the nigrostriatal system associated with transgenics carrying mutant huntingtin. Using huntingtin-BDNF+/- double-mutant mice, we analyzed the effects of reducing the levels of BDNF expression in a model of Huntington's disease (R6/1). When compared with R6/1 mice, these mice exhibit an increased number of aggregates in the substantia nigra pars compacta. In addition, reduction of BDNF expression exacerbates the dopaminergic neuronal dysfunction seen in mutant huntingtin mice, such as the decrease in retrograde labelling of dopaminergic neurons and striatal dopamine content. However, mutant huntingtin mice with normal or lowered BDNF expression show the same decrease in the anterograde transport, number of dopaminergic neurons and nigral volume. In addition, reduced BDNF expression causes decreased dopamine receptor expression in mutant huntingtin mice. Examination of changes in locomotor activity induced by dopamine receptor agonists revealed that, in comparison with R6/1 mice, the double mutant mice exhibit lower activity in response to amphetamine, but not to apomorphine. In conclusion, these findings demonstrate that the decreased BDNF expression observed in Huntington's disease exacerbates dopaminergic neuronal dysfunction, which may participate in the motor disturbances associated with this neurodegenerative disorder.  相似文献   

8.
Parkinson's disease is the most common movement disorder characterized by dopaminergic dysfunction and degeneration. Loss-of-function mutations in the DJ-1 gene have been linked to autosomal recessive forms of early-onset familial Parkinson's disease. DJ-1 is thought to play roles in protection of cells against oxidative stress and in maintenance of the normal dopaminergic function in the nigrostriatal pathway. Here we investigate the consequence of both DJ-1 inactivation and aging in mice. We found that DJ-1-/- mice at the age of 24–27 months have normal numbers of dopaminergic neurons in the substantia nigra and normal levels of dopamine and its major metabolites in the striatum. The number of noradrenergic neurons in the locus coeruleus is also unchanged in DJ-1-/- mice. Moreover, there is no accumulation of oxidative damage or inclusion bodies in aged DJ-1-/- brains. Together, these results indicate that loss of DJ-1 function alone is insufficient to cause nigral degeneration and oxidative damage in the life span of mice.  相似文献   

9.
Recent findings strengthen the connection between iron accumulation in the basal ganglia, oxidative stress and nigrostriatal degeneration. Oxidative stress appears to be elevated in the normal human substantia nigra in comparison with other brain regions, and further increases occur in Parkinson's disease. Accumulation of iron may contribute to degeneration of nigral dopamine neurons by catalyzing oxidative damage to cell components and also by perturbing the network of interactions that modulate cellular redox status.  相似文献   

10.
Dopamine covalently modifies and functionally inactivates parkin   总被引:12,自引:0,他引:12  
Inherited mutations in PARK2, the gene encoding parkin, cause selective degeneration of catecholaminergic neurons in the substantia nigra and locus coeruleus of the brainstem, resulting in early-onset parkinsonism. But the role of parkin in common, sporadic forms of Parkinson disease remains unclear. Here we report that the neurotransmitter dopamine covalently modifies parkin in living dopaminergic cells, a process that increases parkin insolubility and inactivates its E3 ubiquitin ligase function. In the brains of individuals with sporadic Parkinson disease, we observed decreases in parkin solubility consistent with its functional inactivation. Using a new biochemical method, we detected catechol-modified parkin in the substantia nigra but not other regions of normal human brain. These findings show a vulnerability of parkin to modification by dopamine, the principal transmitter lost in Parkinson disease, suggesting a mechanism for the progressive loss of parkin function in dopaminergic neurons during aging and sporadic Parkinson disease.  相似文献   

11.
Tan JM  Dawson TM 《Neuron》2006,50(4):527-529
Mutations in the PTEN-induced putative kinase 1 (PINK1) are a common cause of autosomal recessive Parkinson's disease. In a recent issue of Nature, two independent reports by and show that loss of Drosophila PINK1 leads to defects in mitochondrial function resulting in male sterility, apoptotic muscle degeneration, and minor loss of dopamine neurons that is rescued by overexpression of the ubiquitin E3 ligase, parkin. Thus, PINK1 and parkin appear to function in a common pathway suggesting a convergence of the two genes most commonly associated with autosomal recessive PD.  相似文献   

12.
The impairment of ubiquitin-proteasome system (UPS) is a cellular mechanism underlying the neurodegenerative process in Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent neurotrophic factors promoting the growth and survival of mesencephalic dopamine (DA) neurons. To investigate whether GDNF has neuroprotective effects in a PD model induced by UPS impairment we administered GDNF by osmotic pump in C57BL/6 mice after nigrostriatal lesions with stereotactic injection of proteasome inhibitor lactacystin in the middle forebrain bundle. We found that lactacystin injection severely injured the nigral DA neurons and reduced the striatal levels of DA and its metabolites, while prolonged administration of GDNF at a sustained moderate dose for two weeks can significantly attenuate the lactacystin-induced loss of nigral DA neurons and striatal DA levels by 31% and 40%, respectively. We also investigated the molecular mechanisms for the neuroprotective effects of GDNF showing that lactacystin administration can cause the phosphorylation of extracellular signal-regulated kinase (ERK), p38MAPK (p38), and the c-Jun N-terminal kinase (JNK), whereas GDNF treatment can further enhance the phosphorylation of ERK and Akt but reduce the levels of JNK and p38. These results indicate that prolonged treatment with GDNF can protect the nigral DA neurons from the UPS impairment-induced degeneration. Several signaling path-ways including p38, JNK, Akt and ERK molecules seem to play an important role in this neuroprotection by GDNF.  相似文献   

13.
Epidemiological studies indicate that smoking is a negative, and exposure to pesticides, a positive risk factor for Parkinson's disease (PD). The purpose of this study was to assess the interplay between these two factors in a rodent model of nigrostriatal damage. To approach this, mice were administered nicotine, the agent in smoke implicated in neuroprotection. They were then treated for 3 weeks with the pesticide, paraquat, while nicotine was continued. Paraquat treatment decreased (25%) nigral dopaminergic neurons, consistent with previous results. Chronic nicotine administration significantly protected against nigral cell damage, with only a 16% decline in mice treated with both nicotine and paraquat. Paraquat treatment also decreased (14%) the striatal dopamine transporter, an effect that was partially prevented by nicotine. These changes in the striatal dopamine transporter paralleled those in a select striatal alpha6beta2* nicotinic receptor (nAChR) subtype. In contrast, striatal alpha4beta2* nAChRs were not decreased with paraquat treatment, suggesting they are on a differential subset of dopaminergic terminals. The results show that nicotine treatment partially protects against paraquat-induced declines in nigrostriatal dopaminergic neurons to which a select population of alpha6beta2* nAChRs are localized. Moreover, these data support epidemiological findings that environmental influences can elicit opposing effects on nigrostriatal dopaminergic integrity.  相似文献   

14.
Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration, and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric-oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b), and α-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase-positive neurons in the nigra and decrease in tyrosine hydroxylase-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS−/− male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important because castrated young male mice may be used as a simple, toxin-free, and nontransgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.  相似文献   

15.
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopaminergic neurons in the nigrostriatal pathway. Previous studies have demonstrated that chronic systemic exposure of Lewis rats to rotenone produced many features of PD, and cerebral tauopathy was also detected in the case of severe weight loss. The present study was designed to assess the neurotoxicity of rotenone after daily oral administration for 28 days at several doses in C57BL/6 mice. In addition, we examined the protective effects of 4-phenylbutyrate (4-PBA) on nigral dopamine (DA) neurons in rotenone-treated mice. 4-PBA was injected intraperitoneally daily 30 min before each oral administration of rotenone. Chronic oral administration of rotenone at high doses induced specific nigrostriatal DA neurodegeneration, motor deficits and the up-regulation of alpha-synuclein in the surviving DA neurons. In contrast to the Lewis rat model, cerebral tauopathy was not detected in this mouse model. 4-PBA inhibited rotenone-induced neuronal death and decreased the protein level of alpha-synuclein. These results suggest that this rotenone mouse model may be useful for understanding the mechanism of DA neurodegeneration in PD, and that 4-PBA has a neuroprotective effect in the treatment of PD.  相似文献   

16.
Mutations in parkin, which encodes a RING domain protein associated with ubiquitin ligase activity, lead to autosomal recessive Parkinson's disease characterized by midbrain dopamine neuron loss. Here we show that parkin functions in a multiprotein ubiquitin ligase complex that includes the F-box/WD repeat protein hSel-10 and Cullin-1. HSel-10 serves to target the parkin ubiquitin ligase activity to cyclin E, an hSel-10-interacting protein previously implicated in the regulation of neuronal apoptosis. Consistent with the notion that cyclin E is a substrate of the parkin ubiquitin ligase complex, parkin deficiency potentiates the accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainate and promotes their apoptosis. Furthermore, parkin overexpression attenuates the accumulation of cyclin E in toxin-treated primary neurons, including midbrain dopamine neurons, and protects them from apoptosis.  相似文献   

17.
Role of oxidative stress in paraquat-induced dopaminergic cell degeneration   总被引:8,自引:1,他引:7  
Systemic treatment of mice with the herbicide paraquat causes the selective loss of nigrostriatal dopaminergic neurons, reproducing the primary neurodegenerative feature of Parkinson's disease. To elucidate the role of oxidative damage in paraquat neurotoxicity, the time-course of neurodegeneration was correlated to changes in 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation marker. When mice were exposed to three weekly injections of paraquat, no nigral dopaminergic cell loss was observed after the first administration, whereas a significant reduction of neurons followed the second exposure. Changes in the number of nigral 4-HNE-positive neurons suggest a relationship between lipid peroxidation and neuronal death, since a dramatic increase in this number coincided with the onset and development of neurodegeneration after the second toxicant injection. Interestingly, the third paraquat administration did not cause any increase in 4-HNE-immunoreactive cells, nor did it produce any additional dopaminergic cell loss. Further evidence of paraquat-induced oxidative injury derives from the observation of nitrotyrosine immunoreactivity in the substantia nigra of paraquat-treated animals and from experiments with ferritin transgenic mice. These mice, which are characterized by a decreased susceptibility to oxidative stress, were completely resistant to the increase in 4-HNE-positive neurons and the cell death caused by paraquat. Thus, paraquat exposure yields a model that emphasizes the susceptibility of dopaminergic neurons to oxidative damage.  相似文献   

18.
19.
Despite a dramatic loss of nigrostriatal dopaminergic neurons in Parkinson's disease, clinical symptoms only arise with 70–80% reduction of striatal dopamine. The mechanisms responsible for this functional compensation are currently under debate. Although initial studies showed an enhanced pre-synaptic dopaminergic function with nigrostriatal degeneration, more recent work suggests that functional compensation is not dopamine-mediated. To address this issue, we used cyclic voltammetry to directly measure endogenous dopamine release from striatal slices of control monkeys and animals with a moderate or severe MPTP-induced dopaminergic lesion. The moderately lesioned monkeys were asymptomatic, while the severely lesioned animals were parkinsonian. In monkeys with a moderate lesion, a 300% increase was obtained in endogenous striatal dopamine release. In contrast, in striatal slices from severely lesioned animals, a small % of evoked dopamine signals were similar in amplitude to control while the greater majority were undetectable. These findings suggest that pre-synaptic dopaminergic compensation develops in residual dopaminergic terminals with moderate lesioning, but that this response is lost with severe nigrostriatal damage. Such an interpretation is supported by the results of dopamine turnover studies. This enhanced pre-synaptic dopaminergic activity may be important in maintaining normal motor function during the initial stages of Parkinson's disease.  相似文献   

20.
Gender differences and estrogen effects in parkin null mice   总被引:1,自引:1,他引:0  
Estrogens are considered neurotrophic for dopamine neurons. Parkinson's disease is more frequent in males than in females, and more prevalent in females with short reproductive life. Estrogens are neuroprotective against neurotoxic agents for dopamine neurons in vivo and in vitro . Here, we have investigated the role of estrogens in wild-type (WT) and parkin null mice (PK−/−). WT mice present sexual dimorphisms in neuroprotective mechanisms (Bcl-2/Bax, chaperones, and GSH), but some of these inter-sex differences disappear in PK−/−. Tyrosine hydroxylase (TH) protein and TH+ cells decreased earlier and more severely in female than in male PK−/− mice. Neuronal cultures from midbrain of WT and PK−/− mice were treated with estradiol from 10 min to 48 h. Short-term treatments activated the mitogen-activated protein kinase pathway of WT and PK−/− neurons and the phosphatidylinositol 3'-kinase/AKT/glycogen synthase kinase-3 pathway of WT but not of PK−/− cultures. Long-term treatments with estradiol increased the number of TH+ neurons, the TH expression, and the extension of neurites, and decreased the level of apoptosis, the expression of glial fibrillary acidic protein, and the number of microglial cells in WT but not in PK−/− cultures. The levels of estrogen receptor-α were elevated in midbrain cultures and in the striatum of adult PK−/− male mice, suggesting that suppression of parkin changes the estrogen receptor-α turnover. From our data, it appears that parkin participates in the cellular estrogen response which could be of interest in the management of parkin-related Parkinson's disease patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号