首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic variation at three dipeptidase loci (Dip-A, Dip-B, and Dip-C) in Drosophila simulans was analyzed by starch gel electrophoresis. Dip-A was found to be polymorphic in four populations, while Dip-B and Dip-C were found to be polymorphic in one. The numbers of different alleles found at each respective locus were: Dip-A, two; Dip-B, two; and Dip-C, three. Dip-A was genetically mapped at 57.9 on the second chromosome, and Dip-B and Dip-C at 80.9 and 87.9 on the third chromosome, respectively. Neither Dip-B nor Dip-C has been mapped in D. melanogaster because both loci are apparently monomorphic. Their map positions in D. simulans with respect to flanking markers whose homologous genes have been cytogenetically localized in D. melanogaster suggested that they might be mapped cytogenetically by using available deficiencies in D. melanogaster. Accordingly, by the construction of interspecific hybrids which carried deficiencies of melanogaster and an allele of simulans with a mobility different from that of the fixed melanogaster allele, Dip-B and Dip-C were localized between 87F12-14 and 88C1-3 and between 87B5-6 and 87B8-10, respectively, in the salivary gland chromosomes of D. melanogaster. The similarity between these two species is discussed on the basis of these findings.  相似文献   

2.
Salivary gland X chromosome puffing patterns are described for the Oregon stock of Drosophila melanogaster and for the Berkeley stock of D. simulans. In D. melanogaster regular phase specific puffing was recorded at 21 loci in the third larval instar and subsequent prepupal stage. A comparison of the X chromosome puffing patterns of male and female larvae failed to show any qualitative differences although in the males a group of puffs were active for a longer time during development than in females. The X chromosome puffing patterns of D. simulans are similar to those described for D. melanogaster although two puffs (4F 1–4 and 7B 1–3) were active in D. simulans but not in D. melanogaster. The sex differences in puffing observed in D. melanogaster were also observed in D. simulans.  相似文献   

3.
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed.  相似文献   

4.
The distribution of the transposable elementBari-1 inD. melanogaster andD. simulans was examined by Southern blot analysis and byin situ hybridization in a large number of strains of different geographical origins and established at different times.Bari-1 copies mostly homogeneous in size and physical map are detected in all strains tested. Both inD. melanogaster and inD. simulans a relatively high level of intraspecific insertion site polymorphism is detectable, suggesting that in both speciesBari-1 is or has been actively transposing. The main difference between the two sibling species is the presence of a large tadem array of the element in a well-defined heterochromatic location of theD. melanogaster genome, whereas such a cluster is absent inD. simulans. The presence ofBari-1 elements with apparently identical physical maps in allD. melanogaster andD. simulans strains examined suggests thatBari-1 is not a recent introduction in the genome of themelanogaster complex. Structural analysis reveals unusual features that distinguish it from other inverted repeat transposons, whereas many aspects are similar to the widely distributedTc1 element ofC. elegans.  相似文献   

5.
Drosophila simulans is a close relative of the genetic model D. melanogaster. Its worldwide distribution in combination with the absence of segregating chromosomal inversions makes this species an increasingly attractive model to study the molecular signatures of adaptation in natural and experimental populations. In an effort to improve the genomic resources for D. simulans, we assembled and annotated the genome of a strain originating from Madagascar (M252), the ancestral range of D. simulans. The comparison of the M252 genome to other available D. simulans assemblies confirmed its high quality, but also highlighted genomic regions that are difficult to assemble with NGS data. The annotation of M252 provides a clear improvement with alternative splicing for 52% of the multiple‐exon genes, UTRs for 70% of the genes, 225 novel genes and 781 pseudogenes being reported. We anticipate that the M252 genome will be a valuable resource for many research questions.  相似文献   

6.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

7.
Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.  相似文献   

8.
Hybridization tests among the four sibling species of the Drosophila melanogaster complex were made to determine the reproductive status of the recently discovered D. sechellia (which is endemic to a few islands and islets of the Seychelles archipelago) with regard to its three close relatives, D. mauritiana (endemic to Mauritius) and Afrotropical strains of the two cosmopolitan species D. melanogaster and D. simulans. Interstrain variation in the ability to hybridize with other species was also analyzed for D. melanogaster and D. simulans. D. mauritiana and D. simulans appear to be more weakly isolated from each other than either species is from D. sechellia. A striking unilateral mating success is observed in the cross of D. sechellia with D. simulans. The most extreme isolation is between D. melanogaster and its three siblings. Variation in the ability of strains to hybridize is observed in heterospecific crosses between D. simulans and either D. melanogaster or D. mauritiana.  相似文献   

9.
Efficient mitochondrial function requires physical interactions between the proteins encoded by the mitochondrial and nuclear genomes. Coevolution between these genomes may result in the accumulation of incompatibilities between divergent lineages. We test whether mitochondrial–nuclear incompatibilities have accumulated within the Drosophila melanogaster species subgroup by combining divergent mitochondrial and nuclear lineages and quantifying the effects on relative fitness. Precise placement of nine mtDNAs from D. melanogaster, D. simulans, and D. mauritiana into two D. melanogaster nuclear genetic backgrounds reveals significant mitochondrial–nuclear epistasis affecting fitness in females. Combining the mitochondrial genomes with three different D. melanogaster X chromosomes reveals significant epistasis for male fitness between X‐linked and mitochondrial variation. However, we find no evidence that the more than 500 fixed differences between the mitochondrial genomes of D. melanogaster and the D. simulans species complex are incompatible with the D. melanogaster nuclear genome. Rather, the interactions of largest effect occur between mitochondrial and nuclear polymorphisms that segregate within species of the D. melanogaster species subgroup. We propose that a low mitochondrial substitution rate, resulting from a low mutation rate and/or efficient purifying selection, precludes the accumulation of mitochondrial–nuclear incompatibilities among these Drosophila species.  相似文献   

10.
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920–1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.  相似文献   

11.
Meiotic drive, the class of meiotic mechanisms that drive unequal segregation of alleles among gametes, may be an important force in karyotype evolution. Its role in holocentric organisms, whose chromosomes lack localized centromeres, is poorly understood. We crossed two individuals of Carex scoparia (Cyperaceae) with different chromosome numbers (2n = 33II = 66 × 2n = 32II = 64) to obtain F1 individuals, which we then self‐pollinated to obtain second‐generation (F2) crosses. RAD‐seq was performed for 191 individuals (including the parents, five F1 individuals and 184 F2 individuals). Our F2 linkage map based on stringent editing of the RAD‐seq data set yielded 32 linkage groups. In the final map, 865 loci were located on a linkage map of 3966.99 cM (linkage groups ranged from 24.39 to 193.31 cM in length and contained 5–51 loci each). Three linkage groups exhibit more loci under segregation distortion than expected by chance; within linkage groups, loci exhibiting segregation distortion are clustered. This finding implicates meiotic drive in the segregation of chromosome variants, suggesting that selection of chromosome variants in meiosis may contribute to the establishment and fixation of chromosome variants in Carex, which is renowned for high chromosomal and species diversity. This is an important finding as previous studies demonstrate that chromosome divergence may play a key role in differentiation and speciation in Carex.  相似文献   

12.
Puffing patterns of chromosome arm 3 L of D. yakuba are compared with those of other members of the melanogaster species subgroup D. melanogaster and D. simulans. Several paracentric inversions on 3L have resulted in a considerable rearrangement of gene order in D. yakuba. However the basic sequence of changes in puffing activity which occurs during late larval and prepupal development is very similar to that of D. melanogaster and D. simulans. A fourth member of this species subgroup (D. teissieri) also has similar puffing patterns to those of D. melanogaster despite considerable chromosome evolution.  相似文献   

13.
Lethal phases of the hybrids betweenDrosophila melanogaster and its sibling species,D. simulans are classified into three types: (1) embryonic lethality in hybrids carryingD. simulans cytoplasm andD. melanogaster X chromosome, (2) larval lethality in hybrids not carryingD. simulans X, and (3) temperature-sensitive pupal lethality in hybrids carryingD. simulans X. The same lethal phases are also observed when either of the two other sibling species,D. mauritiana orD. sechellia, is employed for hybridization withD. melanogaster. Here, we describe genetic analyses of each hybrid lethality, and demonstrate that these three types of lethality are independent phenomena. We then propose two models to interpret the mechanisms of each hybrid lethality. The first model is a modification of the conventional X/autosome imbalance hypothesis assuming a lethal gene and a suppressor gene are involved in the larval lethality, while the second model is for embryonic lethality assuming an interaction between a maternal-effect lethal gene and a suppressor gene.  相似文献   

14.
Previous estimates of the size ofDrosophila melanogaster chromosome4 have indicated that it is 1% to 4% of the genome or 6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules ofD. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from thecubitus interruptus andzfh-2 genes, which are located on chromosome4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome4. In DNA obtained from embryos of variousD. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. TheD. melanogaster chromosome4 probes also identified a single, 2.4 Mb band in embryonic DNA fromDrosophila simulans. We conclude thatD. simulans chromosome4 is substantially smaller than that ofD. melanogaster, presumably owing to diffirences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome4 DNA and will facilitate the molecular mapping of this chromosome.  相似文献   

15.
The autosomal salivary gland chromosome puffing patterns of Drosophila simulans are described and compared with the puffing patterns of the sibling species D. melanogaster. During the late third larval instar and the prepupal period the patterns of puffing activity of these two species are similar — approximately 50% of the puffs common to both species showing identical activities. The remaining puffs differ in their timing of activity, or in their mean sizes, or in both of these parameters. A number of puffs (14) found in D. simulans have not been regularly observed in the Oregon stock of D. melanogaster but are active in other D. melanogaster strains. One puff (46 A) of D. melanogaster was absent from D. simulans and forms a heterozygous puff in hybrids, when the homologous chromosomes are synapsed. When the homologues are asynapsed a puff at 46 A is restricted to the melanogaster homologue. The puff at 63E on chromosome arm 3L is considerably smaller in D. simulans than in D. melanogaster and this size difference is autonomous in hybrids. Other puffs not common to both species behave non-autonomously in the species hybrid, even when the homologous chromosomes are asynapsed.  相似文献   

16.
In addition to protecting against desiccation, some of the hydrocarbons of the waxy cuticle have previously been shown to be mating pheromones in Drosophila melanogaster and D. simulans. Therefore, cuticular hydrocarbons were compared among the eight species in the D. melanogaster subgroup. For the two cosmopolitan species and several geographic strains that were studied, all males are quite similar with very abundant monoenes. The major compound in most cases is 7-tricosene. Only three exceptions were found: D. sechellia, and the Afrotropical strains of D. melanogaster and D. simulans. A significant sexual dimorphism exists in three species: D. melanogaster, D. erecta, and D. sechellia. Greater variation was observed in females than in males. D. erecta is singular in the production of long-chain molecules (31–33 carbons). Only three species (D. melanogaster, D. erecta, and D. sechellia) produce diene in significant amounts. Such products, especially 7,11-heptacosadiene, are known to act as aphrodisiacs for D. melanogaster males. In the five other species, females show only quantitative differences from males, generally with 7-tricosene as the most abundant compound. This compound is an aphrodisiac for D. simulans males. Some species such as D. yakuba, D. teissieri, D. orena, D. mauritiana, and the Seychelles strain of D. simulans are almost identical in the chemical composition of cuticular hydrocarbons. In contrast, important variations are observed between geographic populations of D. melanogaster and D. simulans.  相似文献   

17.
An electrophoretic study was carried out to compare the geographic pattern of genetic variation in Drosophila simulans with that of its sibling species, Drosophila melanogaster. An identical set of 32 gene-protein loci was studied in four geographically distant populations of D. simulans and two populations of D. melanogaster, all originating from Europe and Africa. The comparison yielded the following results: (1) tropical populations of D. simulans were, in terms of the number of unique alleles, average heterozygosity per locus, and percentage of loci polymorphic, more variable than conspecific-temperate populations; (2) some loci in both species showed interpopulation differences in allele frequencies that suggest latitudinal clines; and (3) temperate-tropical genetic differentiation between populations was much less in D. simulans than in D. melanogaster. Similar differences between these two species have previously been shown for chromosomal, quantitative, physiological, and middle-repetitive DNA variation. Estimates of N m (number of migrants per generation) from the spatial distribution of rare alleles suggest that both species have similar levels of interpopulation gene flow. These observations lead us to propose two competing hypotheses: the low level of geographic differentiation in D. simulans is due to its evolutionarily recent worldwide colonization and, alternatively, D. simulans has a narrower niche than D. melanogaster. Geographic variation data on different genetic elements (e.g., mitochondrial DNA, two-dimensional proteins, etc.) are required before these hypotheses can be adequately tested.We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   

18.
 Upon bacterial infection, insects secrete a set of synthesized antibacterial proteins into the hemolymph and initiate synergistic destruction of invaders. Cecropin is one such antibacterial protein which is also found in vertebrates. To study the evolutionary history and mechanism of the Cecropin gene family, we determined DNA sequences of one isogenic In(3R)C and six isofemale lines of Drosophila melanogaster as well as one line of D. simulans and of D. yakuba. The phylogenetic analysis of these sequences together with those published for D. virilis and Sarcophaga peregrina reveals frequent gene re-organization. It was also found that silent nucleotide differences within D. melanogaster are quite heterogeneous across the gene region of approximately 3 kilobases and the extent of polymorphism is unusually usually high. These data suggest that the Cecropin gene region of D. melanogaster underwent intragenic recombination as well as introgression from a closely related sibling species, D. simulans. Received: 31 July 1997 / Revised: 24 October 1997  相似文献   

19.
Some fitness components of Drosophila melanogaster and D. simulans were measured in control and inter-specific competition tests. The effects derived from different relative frequencies of the competitors were examined under a factorial scheme with two temperatures, 21 °C or room temperature, and with adults developed in mixed- or pure-species cultures. D. melanogaster appeared as a strong competitor and outnumbered D. simulans in all the culture conditions. This was because intraspecific competition was stronger than inter-specific competition for D. melanogaster whereas the reverse occurred for D. simulans. In competition, the productivity of both species generally appeared as frequency-dependent, although density-dependent productivity seems to be a more accurate explanation. D. simulans was very sensitive to variations of laboratory conditions. Room temperature and previous development with D. melanogaster were more favorable for D. simulans than 21 °C and previous development in pure cultures. These factors did not substantially affect D. melanogaster, which showed a greater ability of adaptation to laboratory conditions than its sibling D. simulans.  相似文献   

20.
J. S. F. Barker 《Oecologia》1971,8(2):139-156
Summary In interspecific competition studies, some cases of apparent change in competitive ability have been reported. But the change in competitive outcome could equally well be due to character displacement. As a preliminary to studies of the effects of association of D. melanogaster (yellow white mutant strain) and D. simulans (vermilion mutant strain), the nature and extent of ecological differences between them, and the nature of their competitive interaction was studied. Differences between the strains were shown for oviposition site preferences, and for larval and pupal distribution. In pure species cultures, simulans showed a greater preference than melanogaster for oviposition in the center of the medium surface. In mixed populations, simulans had an increased preference for this oviposition site, where melanogaster was at low frequency. D. simulans larvae utilized the lower half of the medium to a significantly greater extent than did melanogaster. At low density (5 pairs of parents) in pure species cultures, 68.7% of simulans pupae were on the medium surface. As parental numbers increased, this proportion decreased. The distribution of melanogaster pupae was quite different, with only 8 to 12% on the medium at all densities. But the remaining pupae tended to occur higher on the cylinder wall as parental numbers increased. The competitive interaction changed during the developmental period. At four and eight days after culture initiation, simulans appeared superior, while for total adult progeny production, melanogaster was slightly superior. These strans of the two species were not ecologically equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号