首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have measured the Raman spectrum of GDP bound to the elongation factor protein, EF-Tu, and the c-Harvey-ras protein, p21, two proteins of the guanine nucleotide binding family. In order to separate the Raman spectrum of the nucleotide from the much more intense protein spectrum, we investigate the feasibility of "tagging" the normal modes of the nucleotide by isotopic substitution, here by incoporating deuterium-labeled guanine at the C8 position into the active site. A difference spectrum between the labeled and unlabeled protein-nucleotide complex shows the changes in the Raman spectrum of the bound nucleotide that arise from the isotopic exchange. We find that surprisingly good Raman spectra of bound ligands can be obtained with this method and that the method can be easily generalized to other systems. The data show that the guanine amino group of the nucleotide interacts differently with both EF-Tu and p21 than it does with water, showing a change in hydrogen-bonding properties upon binding. On the other hand, no change in hydrogen bonding is observed at guanine's N7. The data strongly suggest that the conformation of the nucleotide when bound to EF-Tu and that p21 is the C2' endo pucker of the ribose ring and anti about the glycosidic bond. These results are compared to previous structural and chemical studies.  相似文献   

2.
Elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. During the elongation cycle, EF-Tu interacts with guanine nucleotides, aa-tRNA and its nucleotide exchange factor (EF-Ts). Quantitative determination of the equilibrium dissociation constants that govern the interactions of mammalian mitochondrial EF-Tu (EF-Tu(mt)) with guanine nucleotides was the focus of the work reported here. Equilibrium dialysis with [3H]GDP was used to measure the equilibrium dissociation constant of the EF-Tu(mt) x GDP complex (K(GDP) = 1.0 +/- 0.1 microM). Competition of GTP with a fluorescent derivative of GDP (mantGDP) for binding to EF-Tu(mt) was used to measure the dissociation constant of the EF-Tu(mt) x GTP complex (K(GTP) = 18 +/- 9 microM). The analysis of these data required information on the dissociation constant of the EF-Tu(mt) x mantGDP complex (K(mGDP) = 2.0 +/- 0.5 microM), which was measured by equilibrium dialysis. Both K(GDP) and K(GTP) for EF-Tu(mt) are quite different (about two orders of magnitude higher) than the dissociation constants of the corresponding complexes formed by Escherichia coli EF-Tu. The forward and reverse rate constants for the association and dissociation of the EF-Tu(mt) x GDP complex were determined using the change in the fluorescence of mantGDP upon interaction with EF-Tu(mt). These values are in agreement with a simple equilibrium binding interaction between EF-Tu(mt) and GDP. The results obtained are discussed in terms of the recently described crystal structure of the EF-Tu(mt) x GDP complex.  相似文献   

3.
Proton nuclear magnetic resonance (nmr) spectra (270 MHz) were measured of polypeptide chain elongation factor Tu (EF-Tu) from an extreme thermophile, Thermus thermophilus. This protein was stable enough for a series of nmr measurements at temperature as high as 50 °C. For histidine C2 protons, pH dependences of nmr chemical shifts were measured in the pH range from 5.5 to 8.0. The nmr titration curve of one histidine residue of free EF-Tu was markedly affected by the binding with GDP. This titration curve was further affected by the ligand substitution from GDP to GTP, indicating that this histidine is involved in the binding of EF-Tu with guanine nucleotides. The nmr titration curve of another histidine was also affected by the ligand substitution from GDP to GTP. The results of photooxidation experiments suggest that histidine residues are involved in the binding of EF-Tu with guanine nucleotides as well as with aminoacyl-tRNA and/or ribosomes.  相似文献   

4.
Comparative molecular modeling has been used to generate several possible structures for the G-domain of chloroplast elongation factor Tu (EF-Tu(chl)) based on the crystallographic data of the homologous E. coli protein. EF-Tu(chl) contains a 10 amino acid insertion not present in the E. coli protein and this region has been modeled based on its predicted secondary structure. The insertion appears to lie on the surface of the protein. Its orientation could not be determined unequivocally but several likely structures for the nucleotide binding domain of EF-Tu(chl) have been developed. The effects of the presence of water in the Mg2+ coordination sphere and of the protonation state of the GDP ligand on the conformation of the guanine nucleotide binding site have been examined. Relative binding constants of several guanine nucleotide analogs for EF-Tu(chl) have been obtained. The interactions between EF-Tu(chl) and GDP predicted to be important by the models that have been developed are discussed in relation to the nucleotide binding properties of this factor and to the interactions proposed to be important in the binding of guanine nucleotides to related proteins.  相似文献   

5.
Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu have been derived from the atomic coordinates of the trypsin-modified form of EF-Tu-GDP and by comparison with the ras p21 structures. The significance of the differences in the guanine nucleotide binding sites of EF-Tu and ras p21 are discussed. Crystallization of the EF-Tu-GMPPNP complex is reported.  相似文献   

6.
We have studied the effects of specific amino acid replacements in EF-Tu upon the protein's interactions with guanine nucleotides and elongation factor Ts (EFTs). We found that alterations at the lysine residue of the Asn-Lys-Cys-Asp sequence, the guanine ring-binding sequence, differentially affect the protein's ability to bind guanine nucleotides. Wild type EF-Tu (Lys-136) binds GDP and GTP much more tightly than do many of the altered proteins. Replacing lysine by arginine lowers the protein's affinity for GDP by about 20-fold relative to the change in its affinity for EF-Ts. Substitutions at residue 136 by glutamine (K136Q) and glutamic acid (K136E) further lower the protein relative affinity for GDP by factors of about 4 and 10, respectively. In contrast, replacement of the residue by isoleucine (K136I) eliminates guanine nucleotide binding as well as EF-Ts binding. Apparently, the distortion of this loop by substitution at residue 136 of a bulky hydrophobic residue can hamper the binding for both substrates or disrupt the folding of the protein. All altered proteins except EF-Tu(K136I) are able to bind tRNA(Phe); however, they require much higher concentrations of GTP than wild type EF-Tu. In minimal media, Escherichia coli cells harboring plasmids encoding EF-Tu(K136E) or EF-Tu(K136Q) suffer growth retardation relative to cells bearing the same plasmid encoding wild type EF-Tu. Co-transformation of these cells with a compatible plasmid bearing the EF-Ts gene reverses this growth problem. The growth retardation effect of some of the altered proteins can be explained by their sequestering EF-Ts. These results indicate that EF-Ts is essential to the growth of E. coli and suggest a technique for studying EF-Ts mutants as well as for identifying other guanine nucleotide exchange enzymes.  相似文献   

7.
Nucleotide exchange in elongation factor Tu (EF-Tu) is catalyzed by elongation factor Ts (EF-Ts). Similarly to other GTP-binding proteins, the structural changes in the P loop and the Mg(2+) binding site are known to be important for nucleotide release from EF-Tu. In the present paper, we determine the contribution of the contacts between helix D of EF-Tu at the base side of the nucleotide and the N-terminal domain of EF-Ts to the catalysis. The rate constants of the multistep reaction between Escherichia coli EF-Tu, EF-Ts, and GDP were determined by stopped-flow kinetic analysis monitoring the fluorescence of either Trp-184 in EF-Tu or mant-GDP. Mutational analysis shows that contacts between helix D of EF-Tu and the N-terminal domain of EF-Ts are important for both complex formation and the acceleration of GDP dissociation. The kinetic results suggest that the initial contact of EF-Ts with helix D of EF-Tu weakens binding interactions around the guanine base, whereas contacts of EF-Ts with the phosphate binding side that promotes the release of the phosphate moiety of GDP appear to take place later. This "base-side-first" mechanism of guanine nucleotide release resembles that found for Ran x RCC1 and differs from mechanisms described for other GTPase x GEF complexes where interactions at the phosphate side of the nucleotide are released first.  相似文献   

8.
A theoretical study was performed using density functional theory (DFT) to investigate hydrogen bonding interactions in signature complexes formed between keto-9H guanine (Gua) and aspartic acid (Asp) at neutral pH. Optimized geometries, binding energies and the theoretical IR spectra of guanine, aspartic acid and their corresponding complexes (Gua-Asp) were calculated using the B3LYP method and the 6-31+G(d) basis set. Stationary points found to be at local minima on the potential energy surface were verified by second derivative harmonic vibrational frequency calculations at the same level of theory. AIM theory was used to analyze the hydrogen bonding characteristics of these DNA base complex systems. Our results show that the binding motif for the most stable complex is strikingly similar to a Watson-Crick motif observed in the guanine-cytosine base pair. We have found a range of hydrogen bonding interactions between guanine and aspartic acid in the six complexes. This was further verified by theoretical IR spectra of ω(C-H---O-H) cm−1 stretches for the Gua-Asp complexes. The electron density plot indicates strong hydrogen bonding as shown by the 2p z dominant HOMO orbital character.  相似文献   

9.
The interaction of Escherichia coli elongation factor Tu (EF-Tu) with elongation factor Ts (EF-Ts) and guanine nucleotides was studied by the stopped-flow technique, monitoring the fluorescence of tryptophan 184 in EF-Tu or of the mant group attached to the guanine nucleotide. Rate constants of all association and dissociation reactions among EF-Tu, EF-Ts, GDP, and GTP were determined. EF-Ts enhances the dissociation of GDP and GTP from EF-Tu by factors of 6 x 10(4) and 3 x 10(3), respectively. The loss of Mg(2+) alone, without EF-Ts, accounts for a 150-300-fold acceleration of GDP dissociation from EF-Tu.GDP, suggesting that the disruption of the Mg(2+) binding site alone does not explain the EF-Ts effect. Dissociation of EF-Ts from the ternary complexes with EF-Tu and GDP/GTP is 10(3)-10(4) times faster than from the binary complex EF-Tu.EF-Ts, indicating different structures and/or interactions of the factors in the binary and ternary complexes. Rate constants of EF-Ts binding to EF-Tu in the free or nucleotide-bound form or of GDP/GTP binding to the EF-Tu.EF-Ts complex range from 0.6 x 10(7) to 6 x 10(7) M(-1) s(-1). At in vivo concentrations of nucleotides and factors, the overall exchange rate, as calculated from the elemental rate constants, is 30 s(-1), which is compatible with the rate of protein synthesis in the cell.  相似文献   

10.
The mammalian mitochondrial complex consisting of elongation factors EF-Tu and EF-Ts (EF-Tu.Tsmt) is capable of efficiently binding aminoacyl-tRNA to the ribosome in the presence and absence of guanine nucleotides. In the presence of GTP the binding reaction is catalytic. In the absence of guanine nucleotides, or in the presence of a non-hydrolyzable GTP analog, only one round of ribosome binding occurs. EF-Tu.Tsmt is capable of forming a ternary complex with GTP and Escherichia coli Phe-tRNA as demonstrated by gel filtration chromatography, nitrocellulose filter binding, and by protection of the aminoacyl-tRNA bond from hydrolysis. GDP and the non-hydrolyzable GTP analog guanyl-5'-yl imidodiphosphate are also capable of facilitating ternary complex formation with EF-Tu.Tsmt, but are less effective. No kinetic advantage results from the formation of this ternary complex prior to ribosome binding, and EF-Tu.Tsmt may actually bind aminoacyl-tRNA directly to the ribosome prior to binding GTP. These results suggest that a variation of the prokaryotic elongation cycle is occurring in animal mitochondria. N-Ethylmaleimide inhibits the activity of EF-Tu.Tsmt in polymerization and in ribosome binding. However, the activity of the EF-Tsmt which can be measured independently, is not altered.  相似文献   

11.
Yeast mitochondrial elongation factor Tu (EF-Tu) was purified 200-fold from a mitochondrial extract of Saccharomyces cerevisiae to yield a single polypeptide of Mr = approximately 47,000. The factor was detected by complementation with Escherichia coli elongation factor G and ribosomes in an in vitro phenylalanine polymerization reaction. Mitochondrial EF-Tu, like E. coli EF-Tu, catalyzes the binding of aminoacyl-tRNA to ribosomes and possesses an intrinsic GTP hydrolyzing activity which can be activated either by kirromycin or by ribosomes. Kinetic and binding analyses of the interactions of mitochondrial EF-Tu with guanine nucleotides yielded affinity constants for GTP and GDP of approximately 5 and 25 microM, respectively. The corresponding affinity constants for the E. coli factor are approximately 0.3 and 0.003 microM, respectively. In keeping with these observations, we found that purified mitochondrial EF-Tu, unlike E. coli EF-Tu, does not contain endogenously bound nucleotide and is not stabilized by GDP. In addition, we have been unable to detect a functional counterpart to E. coli EF-Ts in extracts of yeast mitochondria and E. coli EF-Ts did not detectably stimulate amino acid polymerization with mitochondrial EF-Tu or enhance the binding of guanine nucleotides to the factor. We conclude that while yeast mitochondrial EF-Tu is functionally analogous to and interchangeable with E. coli EF-Tu, its affinity for guanine nucleotides and interaction with EF-Ts are quite different from those of E. coli EF-Tu.  相似文献   

12.
We have recorded the circular dichroism spectra of the cellular and the viral H-ras gene products both in the absence and in the presence of guanine nucleotides and analyzed these spectra in terms of the secondary structure composition of these proteins. It is shown that the GTP complex of the ras proteins has a different secondary structure composition than the GDP complex and, furthermore, that there are differences in the secondary structure of the viral ras protein and the cellular ras protein. We have also recorded and analyzed the circular dichroism spectrum of the isolated guanine nucleotide binding domain of the Escherichia coli elongation factor Tu (EF-Tu), which has been considered as a model for the tertiary structure of the ras proteins [McCormick, F., Clark, B. F. C., LaCour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., & Nyborg, J. (1985) Science (Washington, D.C.) 230, 78-82]. Our data show that the guanine nucleotide binding domain of EF-Tu (30% alpha-helix and 16% beta-pleated sheet for the GDP complex) has quite a different secondary structure composition than the ras proteins (e.g., the cellular ras protein has 47% alpha-helix and 22% beta-pleated sheet for the GDP complex), indicating that the protein core comprising the guanine nucleotide binding site might be similar but that major structural differences must exist at the portion outside this core. Normal and transforming ras proteins also differ slightly in their hydrodynamic properties as shown by sedimentation velocity runs in the analytical ultracentrifuge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of guanine nucleotides and kirromycin on the conformation and stability of the chloroplast elongation factor Tu (EF-Tuchl) from Euglena gracilis has been investigated. Free EF-Tuchl is quite thermolabile but the protein is greatly stabilized by guanine nucleotides. The temperature dependence of the thermal inactivation of EF-Tuchl was used to calculate the amount of stabilization energy conferred by the guanine nucleotides. GDP increases the activation energy for the denaturation process by 77 kcal/mol while GTP increases the activation energy by 51 kcal/mol. The difference in heat stability of free EF-Tuchl and the EF-Tuchl.GDP complex was used to determine a dissociation constant of 1.3 x 10(-7) M at 37 degrees C. The temperature dependence of the dissociation constant allowed the calculation of a delta H degree obsd of -55 kcal/mol and a delta S degree obsd of -146 cal/(mol degree) for GDP binding to EF-Tuchl.EF-Tuchl was found to have a trypsin-sensitive region similar to that observed for Escherichia coli EF-Tu. This loop region was protected by GTP and kirromycin but not by GDP.  相似文献   

14.
S Campbell-Burk 《Biochemistry》1989,28(24):9478-9484
[15N]Glycine was biosynthetically incorporated into normal cellular N-ras p21 and a position 12 transforming mutant, in order to produce p21 proteins containing several site-specific NMR probes at or near activating positions in the guanine nucleotide binding domain. We have previously assigned all five glycine resonances located in loops directly involved in binding of guanosine diphosphate in the wild-type p21 protein [Campbell-Burk, S., Papastavros, M. Z., McCormick, F., & Redfield, A. G. (1989) Proc. Natl. Acad. Sci. U.S.A 86, 817-820]. In this report, the corresponding glycine resonances in the p21 mutant have been assigned, and spectral differences between normal and mutant p21-guanosine diphosphate (p21.GDP) complexes have been investigated. Our combined 1H[15N] and 31P NMR results show that substitution of aspartate for glycine-12 produces perturbations in the phosphoryl binding domain, near the point of the mutation. Although many of the remaining glycines were unaffected, spectral differences were also observed outside the GDP binding domain. Two of the five active-site glycines in wild-type p21.GDP have very slow amide proton exchange rates with water (kappa less than 2.8 x 10(-5) s-1). The active-site glycines are located in solvent-exposed loops, so their apparent solvent inaccessibility may result from strong hydrogen bond formation between glycine amide protons and bound guanine diphosphate and/or other nearby groups in p21.  相似文献   

15.
Elongation factor Tu (EF-Tu) belongs to the family of GTP-binding proteins and requires elongation factor Ts (EF-Ts) for nucleotide exchange. Crystal structures suggested that one of the salient features in the EF-Tu x EF-Ts complex is a conformation change in the switch II region of EF-Tu that is initiated by intrusion of Phe81 of EF-Ts between His84 and His118 of EF-Tu and may result in a destabilization of Mg2+ coordination and guanine nucleotide release. In the present paper, the contribution of His84 to nucleotide release was studied by pre-steady-state kinetic analysis of nucleotide exchange in mutant EF-Tu in which His84 was replaced by Ala. Both intrinsic and EF-Ts-catalyzed nucleotide release was affected by the mutation, resulting in a 10-fold faster spontaneous GDP release and a 4-fold faster EF-Ts-catalyzed release of GTP and GDP. Removal of Mg2+ from the EF-Tu x EF-Ts complex increased the rate constant of GDP release 2-fold, suggesting a small contribution to nucleotide exchange. Together with published data on the effects of mutations interfering with other putative interactions between EF-Tu and EF-Ts, the results suggest that each of the contacts in the EF-Tu x EF-Ts complex alone contributes moderately to nucleotide destabilization, but together they act synergistically to bring about the overall 60,000-fold acceleration of nucleotide exchange in EF-Tu by EF-Ts.  相似文献   

16.
In the cocrystal formed by 7-methylguanosine-5'-phosphate.phenylalanine.6H2O, the interactions between guanine and phenylalanine are similar to those observed in the complex of ribonuclease T1 with 2'-guanylic acids, and those of the two G-proteins, Elongation Factor-Tu and ras oncogene p21, with GDP. They are similar in the following three points: (a) guanine N(1)H and N(2)H donate cyclic N-H...O hydrogen bonds to the carboxylate group of phenylalanine in the former cocrystal and to the side chain carboxylate group of Asp or Glu in the latter proteins, (b) O(6) of guanine accepts hydrogen bond(s) from main-chain NH group(s), and (c) the purine moiety is sandwiched between aromatic (or hydrophobic) amino acid side chains.  相似文献   

17.
Ras proteins play a critical role in controlling normal cellular growth and, when activated by mutation, in causing malignant transformation. Regulation of p21ras is achieved by GTPase activating proteins, which control the rate of hydrolysis of GTP to GDP, and also by GDP dissociation stimulators, which catalyze the exchange of guanine nucleotides. Several such proteins have now been identified and their control mechanisms characterized.  相似文献   

18.
EF-Tu from B. stearothermophilus binds divalent metal ions even in the absence of guanine nucleotides. The association constants necessary for characterizing the multiple equilibria between EF-Tu, GDP and the divalent ions magnesium and manganese were determined by equilibrium dialysis. The constants are 4.6 X 10(4) M-1 and 5.4 X 10(5) M-1 for the binding of Mg2 and 1.0 X 10(5) M-1 and 1.1 X 10(6) M-1 for the binding of Mn2 to EF-Tu and EF-Tu . GDP, respectively. In the absence of divalent ions EF-Tu binds GMP, GDP and GTP with association constants of 3 x 10(3) M-1, 1.7 x 10(7) M-1 and 1.3 x 10(6) M-1, respectively. The binding of GDP in the presence of metal ions is an order of magnitude stronger than in the absence of metal ions.  相似文献   

19.
The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetic procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu X GTP X EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu X GTP complex and of GTP to EF-Tu X EF-Ts were calculated to be 7 X 10(7) and 2 X 10(6) M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constant from the EF-Tu X GTP complex (2.5 X 10(-2) s-1). A procedure based on the observation that EF-Tu X GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu X GTP with Val-tRNAVal and Phe-tRNAPhe. Binding constants of Phe-tRNAPhe and Val-tRNAVal to EF-Tu X GTP of 4.8 X 10(7) and 1.2 X 10(7)M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.  相似文献   

20.
A study of the kinetic mechanism of elongation factor Ts   总被引:5,自引:0,他引:5  
Elongation factor Ts (EF-Ts) catalyzes the reaction EF-Tu X GDP + nucleotide diphosphate (NDP) reversible EF-Tu X NDP + GDP where NDP is GDP, IDP, GTP, or GMP X PCP. The EF-Ts-catalyzed exchange rates were measured at a series of concentrations of EF-Tu X [3H] GDP and free nucleotide. Plotting the rate data according to the Hanes method produced a series of lines intersecting on the ordinate, a characteristic of substituted enzyme mechanisms. GDP is a competitive inhibitor of IDP exchange, a result predicted for the substituted enzyme mechanism but inconsistent with ternary complex mechanisms that involve an intermediate complex containing EF-Ts and both substrates. The exchange of both GTP and the GTP analog GMP X PCP also follow the substituted enzyme mechanism. The maximal rates of exchange of GDP and GTP are the same, which indicates that the rates of dissociation of EF-Ts from EF-Tu X GDP and EF-Tu X GTP are the same. The steady-state maximal exchange rate is slower by a factor of 20 than the previously reported rate of dissociation of GDP from EF-Ts X EF-Tu. This is interpreted to mean that the rate-determining step in the exchange reaction is the dissociation of EF-Ts from EF-Tu X GDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号