首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.  相似文献   

2.
The Ras-GRF1 exchange factor has regulated guanine nucleotide exchange factor (GEF) activity for H-Ras and Rac1 through separate domains. Both H-Ras and Rac1 activation have been linked to synaptic plasticity and thus could contribute to the function of Ras-GRF1 in neuronal signal transduction pathways that underlie learning and memory. We defined the effects of Ras-GRF1 and truncation mutants that include only one of its GEF activities on the morphology of PC12 phaeochromocytoma cells. Ras-GRF1 required coexpression of H-Ras to induce morphological effects. Ras-GRF1 plus H-Ras induced a novel, expanded morphology in PC12 cells, which was characterized by a 10-fold increase in soma size and by neurite extension. A truncation mutant of Ras-GRF1 that included the Ras GEF domain, GRFdeltaN, plus H-Ras produced neurite extensions, but did not expand the soma. This neurite extension was blocked by inhibition of MAP kinase activation, but was independent of dominant-negative Rac1 or RhoA. A truncation mutant of Ras-GRF1 that included the Rac GEF domains, GRFdeltaC, produced the expanded phenotype in cotransfections with H-Ras. Cell expansion was inhibited by wortmannin or dominant-negative forms of Rac1 or Akt. GRFdeltaC binds H-Ras.GTP in both pulldown assays from bacterial lysates and by coimmunoprecipitation from HEK293 cells. These results suggest that coordinated activation of H-Ras and Rac1 by Ras-GRF1 may be a significant controller of neuronal cell size.  相似文献   

3.
The guanine-nucleotide exchange factor (GEF) RalGPS1a activates small GTPase Ral proteins such as RalA and RalB by stimulating the exchange of Ral bound GDP to GTP, thus regulating various downstream cellular processes. RalGPS1a is composed of an N-terminal Cdc25-like catalytic domain, followed by a PXXP motif and a C-terminal pleckstrin homology (PH) domain. The Cdc25 domain of RalGPS1a, which shares about 30% sequence identity with other Cdc25-domain proteins, is thought to be directly engaged in binding and activating the substrate Ral protein. Here we report the crystal structure of the Cdc25 domain of RalGPS1a. The bowl shaped structure is homologous to the Cdc25 domains of SOS and RasGRF1. The most remarkable difference between these three Cdc25 domains lies in their active sites, referred to as the helical hairpin region. Consistent with previous enzymological studies, the helical hairpin of RalGPS1a adopts a conformation favorable for substrate binding. A modeled RalGPS1a-RalA complex structure reveals an extensive binding surface similar to that of the SOS-Ras complex. However, analysis of the electrostatic surface potential suggests an interaction mode between the RalGPS1a active site helical hairpin and the switch 1 region of substrate RalA distinct from that of the SOS-Ras complex.  相似文献   

4.
Vinexin, a novel protein that plays a key role in cell spreading and cytoskeletal organization, contains three SH3 domains and binds to vinculin through its first and second SH3 domains. We show here that the third SH3 domain binds to Sos, a guanine nucleotide exchange factor for Ras and Rac, both in vitro and in vivo. Point mutations in the third SH3 domain abolished the vinexin-Sos interaction. Stimulation of NIH/3T3 cells with serum, epidermal growth factor (EGF), or platelet-derived growth factor (PDGF) decreased the electrophoretic mobility of Sos and concomitantly inhibited formation of the vinexin-Sos complex. Phosphatase treatment of lysates restored the binding of Sos to vinexin, suggesting that signaling from serum, EGF, or PDGF regulates the vinexin-Sos complex through the Sos phosphorylation. To evaluate the function of vinexin downstream of growth factors, we examined the effects of wild-type and mutant vinexin expression on extracellular signal-regulated kinase (Erk) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation in response to EGF. Exogenous expression of vinexin beta in NIH/3T3 cells enhanced JNK/SAPK activation but did not affect Erk activation. Moreover mutations in the third SH3 domain abolished EGF activation of JNK/SAPK in a dominant-negative fashion, whereas they slightly stimulated Erk. Together these results suggest that vinexin can selectively modulate EGF-induced signal transduction pathways leading to JNK/SAPK kinase activation.  相似文献   

5.
6.
Insulin-like growth factor (IGF)-1 plays crucial roles in growth control and rearrangements of the cytoskeleton. IGF-1 binds to the IGF-1 receptor and thereby induces the autophosphorylation of this receptor at its tyrosine residues. The phosphorylation of the IGF-1 receptor is thought to initiate a cascade of events. Although various signaling molecules have been identified, they appear to interact with the tyrosine-phosphorylated IGF-1 receptor. Here, we identified leukemia-associated Rho guanine nucleotide exchange factor (GEF) (LARG), which contains the PSD-95/Dlg/ZO-1 (PDZ), regulator of G protein signaling (RGS), Dbl homology, and pleckstrin homology domains, as a nonphosphorylated IGF-1 receptor-interacting molecule. LARG formed a complex with the IGF-1 receptor in vivo, and the PDZ domain of LARG interacted directly with the COOH-terminal domain of IGF-1 receptor in vitro. LARG had an exchange activity for Rho in vitro and induced the formation of stress fibers in NIH 3T3 fibroblasts. When MDCKII epithelial cells were treated with IGF-1, Rho and its effector Rho-associated kinase (Rho-kinase) were activated and actin stress fibers were enhanced. Furthermore, the IGF-1-induced Rho-kinase activation and the enhancement of stress fibers were inhibited by ectopic expression of the PDZ and RGS domains of LARG. Taken together, these results indicate that IGF-1 activates the Rho/Rho-kinase pathway via a LARG/IGF-1 receptor complex and thereby regulates cytoskeletal rearrangements.  相似文献   

7.
Hepatocyte growth factor (HGF; scatter factor) is a multipotent protein with mitogenic, motogenic, and developmental functions. Upon activation, the HGF-receptor c-Met binds and phosphorylates the multisite docking protein Gab1. Besides binding motifs for phosphatidylinositol 3-kinase and Grb2, Gab 1 contains multiple Tyr-X-X-Pro (YXXP) motifs which, when phosphorylated, are potential binding sites for the adapter proteins c-Crk and Crk-like (CRKL). Stimulation of human embryonic kidney cells (HEK293) with HGF leads to Gab1 association with CRKL. The Gab1-CRKL interaction requires both, the SH2 domain of CRKL and the region containing the YXXP motifs in Gab1. CRKL binds via its first SH3 domain to several downstream signal transducers, including C3G an activator of the small GTPase Rap1. Indeed, Rap1 was rapidly activated after HGF stimulation of HEK293 cells. Rap1 activation through HGF was suppressed through transfection of a truncated C3G protein which only contains the SH3-binding motifs of C3G. Transfection of nonmutated Gab1 led to a strong increase of Rap1.GTP in the absence of HGF. In contrast, transfection of the GabDeltaYXXP mutant abolished the elevation of Rap1.GTP by HGF. A replating assay indicated that HGF decreases the adhesion of HEK293 cells. The results presented here delineate a novel signaling pathway from HGF to the GTPase Rap1 which depends on the interaction of the adapter protein CRKL with the exchange factor C3G and could be linked to cell migration.  相似文献   

8.
SHP-2 is an Src homology 2 (SH2) domain-containing tyrosine phosphatase with crucial functions in cell signaling and major pathological implications. It stays inactive in the cytosol and is activated by binding through its SH2 domains to tyrosine-phosphorylated receptors on the cell surface. One such cell surface protein is PZR, which contains two tyrosine-based inhibition motifs responsible for binding of SHP-2. We have generated a glutathione S-transferase fusion protein carrying the tandem tyrosine-based inhibition motifs of PZR, and the protein was tyrosine-phosphorylated by co-expressing c-Src in Escherichia coli cells. The purified phosphoprotein displays a strong binding to SHP-2 and causes its activation in vitro. However, when introduced into NIH 3T3 cells by using a protein delivery reagent, it effectively inhibited the activation of ERK1/2 induced by growth factors and serum but not by phorbol ester, in reminiscence of the effects caused by expression of dominant negative SHP-2 mutants and deletion of functional SHP-2. The data suggest that the exogenously introduced PZR protein specifically binds SHP-2, blocks its translocation, and renders it functionally incompetent. This is further supported by the fact that the phosphorylated PZR protein had no inhibitory effects on fibroblasts derived from mice expressing only a mutant SHP-2 protein lacking most of the N-terminal SH2 domain. This study thus provides a novel and highly specific method to interrupt the function of SHP-2 in cells.  相似文献   

9.
Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.  相似文献   

10.
Naofen has recently been identified from the rat brain/spinal cord cDNA library as a substance reactive against an anti-shigatoxin (Stx)-2 antibody. Naofen mRNA is composed of 4620 nucleotides and encodes 1170 amino acids. Naofen contains four WD-repeat domains in its N-terminus and is ubiquitously distributed in many tissues of the rat. Tumor necrosis factor (TNF)-α enhanced the expression of naofen mRNA in HEK293 cells in a dose-dependent manner. Furthermore, naofen siRNA, which predominantly knocked down the expression of naofen mRNA, significantly reduced both TNF-α-induced caspase-3 activation and apoptosis in HEK293 cells. Overexpression of naofen in HEK293 cells (FLAG-NF) spontaneously induced caspase -3 activation and apoptosis, and showed extremely high susceptibility to TNF-α-induced apoptosis. These results indicated that naofen may function as a novel modulator activating caspase-3, and promoting TNF-α-stimulated apoptosis.  相似文献   

11.
Voltage-gated K(+) (Kv) 2.1 is the dominant Kv channel that controls membrane repolarization in rat islet beta-cells and downstream insulin exocytosis. We recently showed that exocytotic SNARE protein SNAP-25 directly binds and modulates rat islet beta-cell Kv 2.1 channel protein at the cytoplasmic N terminus. We now show that SNARE protein syntaxin 1A (Syn-1A) binds and modulates rat islet beta-cell Kv2.1 at its cytoplasmic C terminus (Kv2.1C). In HEK293 cells overexpressing Kv2.1, we observed identical effects of channel inhibition by dialyzed GST-Syn-1A, which could be blocked by Kv2.1C domain proteins (C1: amino acids 412-633, C2: amino acids 634-853), but not the Kv2.1 cytoplasmic N terminus (amino acids 1-182). This was confirmed by direct binding of GST-Syn-1A to the Kv2.1C1 and C2 domains proteins. These findings are in contrast to our recent report showing that Syn-1A binds and modulates the cytoplasmic N terminus of neuronal Kv1.1 and not by its C terminus. Co-expression of Syn-1A in Kv2.1-expressing HEK293 cells inhibited Kv2.1 surfacing, which caused a reduction of Kv2.1 current density. In addition, Syn-1A caused a slowing of Kv2.1 current activation and reduction in the slope factor of steady-state inactivation, but had no affect on inactivation kinetics or voltage dependence of activation. Taken together, SNAP-25 and Syn-1A mediate secretion not only through its participation in the exocytotic SNARE complex, but also by regulating membrane potential and calcium entry through their interaction with Kv and Ca(2+) channels. In contrast to Ca(2+) channels, where these SNARE proteins act on a common synprint site, the SNARE proteins act not only on distinct sites within a Kv channel, but also on distinct sites between different Kv channel families.  相似文献   

12.
The human ECT2 protooncogene encodes a guanine nucleotide exchange factor for the Rho GTPases and regulates cytokinesis. Although the oncogenic form of ECT2 contains an N-terminal truncation, it is not clear how the structural abnormality of ECT2 causes malignant transformation. Here we show that both the removal of the negative regulatory domain and alteration of subcellular localization are required to induce the oncogenic activity of ECT2. The transforming activity of oncogenic ECT2 was strongly inhibited by dominant negative Rho GTPases, suggesting the involvement of Rho GTPases in ECT2 transformation. Although deletion of the N-terminal cell cycle regulator-related domain (N) of ECT2 did not activate its transforming activity, removal of the small central domain (S), which contains two nuclear localization signals (NLSs), significantly induced the activity. The ECT2 N domain interacted with the catalytic domain and significantly inhibited the focus formation by oncogenic ECT2. Interestingly, the introduction of the NLS mutations in the S domain of N-terminally truncated ECT2 dramatically induced the transforming activity of this otherwise non-oncogenic derivative. Among the known Rho GTPases expressed in NIH 3T3 cells, RhoA was predominantly activated by oncogenic ECT2 in vivo. Therefore, the mislocalization of structurally altered ECT2 might cause the untimely activation of cytoplasmic Rho GTPases leading to the malignant transformation.  相似文献   

13.
Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.  相似文献   

14.
15.
The guanine nucleotide exchange factor (GEF) Son-of-sevenless (Sos) encodes a complex multidomain protein best known for its role in activating the small GTPase RAS in response to receptor tyrosine kinase (RTK) stimulation. Much less well understood is SOS's role in modulating RAC activity via a separate GEF domain. In the course of a genetic modifier screen designed to investigate the complexities of RTK/RAS signal transduction, a complementation group of 11 alleles was isolated and mapped to the Sos locus. Molecular characterization of these alleles indicates that they specifically affect individual domains of the protein. One of these alleles, SosM98, which contains a single amino acid substitution in the RacGEF motif, functions as a dominant negative in vivo to downregulate RTK signaling. These alleles provide new tools for future investigations of SOS-mediated activation of both RAS and RAC and how these dual roles are coordinated and coregulated during development.  相似文献   

16.
Leucine-rich repeat kinase 2 (LRRK2), a product of a causative gene for the autosomal-dominant form of familial Parkinson's disease (PARK8), harbors a Ras-like small GTP binding protein-like (ROC) domain besides the kinase domain, although the relationship between these two functional domains remains elusive. Here we show by thin-layer chromatographic analysis that LRRK2 stably binds GTP but lacks a GTPase activity in HEK293 and Neuro-2a cells. A ROC domain mutation that converts LRRK2 to a guanine nucleotide-free form (T1348N) abolishes the kinase activity of LRRK2 as well as its phosphate incorporation upon metabolic labeling. The phosphorylation of LRRK2 was inhibited by potential inhibitors for cyclic AMP-dependent protein kinase. These data suggest that binding of GTP to the ROC domain regulates the kinase activity of LRRK2 as well as its phosphorylation by other kinase(s).  相似文献   

17.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

18.
Sef (similar expression to fgf genes) is a member of the fibroblast growth factor (FGF) synexpression group that negatively regulates FGF receptor (FGFR) signaling in zebrafish during early embryonic development and in mammalian cell culture systems. The mechanism by which Sef exerts its inhibitory effect remains controversial. It has been reported that Sef functions either through binding to and inhibiting FGFR1 activation or by acting downstream of FGF receptors at the level of MEK/ERK kinases. In both cases, the intracellular domain of Sef was found to play a role in the inhibitory function of Sef. Here we demonstrated that both extracellular and transmembrane domains of Sef contributed to Sef-mediated negative regulation of FGF signaling. In fact, over-expression studies in NIH3T3 cells showed that a truncated mutant of Sef, which lacks the intracellular domain (SefECTM), exerted the inhibitory activity on FGF signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent activation of the Raf/MEK/ERK signaling cascade. We also showed that SefECTM associated with FGFR1, and inhibited FGF-induced ERK activation in HEK293T cells. Furthermore, we demonstrated that the over-expression of SefECTM was able to inhibit the function of a constitutively activated form of FGFR1, FGFR1-C289R, but not FGFR1-K562E. Finally, we found that SefECTM reduced cell viability when over-expressed in human umbilical vein endothelial cells (HUVEC). These data provide additional insight into the structure-activity relationship in the mechanism of inhibitory action of Sef on FGFR1-mediated signaling.  相似文献   

19.
Intersectin 1L (ITSN1L) acts as a specific guanine nucleotide exchange factor (GEF) for the small guanine nucleotide binding protein Cdc42 via its C‐terminal DH domain. Interestingly, constructs of ITSN1L that comprise additional domains, for instance the five SH3 domains amino‐terminal of the DH domain, were shown to be inhibited in their exchange factor activity. Here, we investigate the inhibitory mechanism of ITSN1L in detail and identify a novel short amino acid motif which mediates autoinhibition. We found this motif to be located in the linker region between the SH3 domains and the DH domain, and we show that within this motif W1221 acts as key residue in establishing the inhibitory interaction. This assigns ITSN1L to a growing class of GEFs that are regulated by a short amino acid motif inhibiting GEF activity by an intramolecular interaction. Moreover, we quantify the interaction between the ITSN1L SH3 domains and the Cdc42 effector N‐WASP using fluorescence anisotropy binding experiments. As the SH3 domains are not involved in autoinhibition, binding of N‐WASP does not release inhibition of nucleotide exchange activity in kinetic experiments, in contrast to earlier observations.  相似文献   

20.
Human Sin1 (SAPK-interacting protein 1) is a member of a conserved family of orthologous proteins that have an essential role in signal transduction in yeast and Dictyostelium. This study demonstrates that most Sin1 orthologues contain both a Raf-like Ras-binding domain (RBD) and a pleckstrin homology (PH) domain. These domains are functional in the human Sin1 protein, with the PH domain involved in lipid and membrane binding by Sin1, and the RBD able to bind activated H-and K-Ras. Sin1 and Ras co-immunoprecipitated and co-localised, showing that these proteins associate with each other in vivo. Overexpression of Sin1 inhibited the activation of ERK, Akt and JNK signalling pathways by Ras. In contrast, siRNA knockdown of endogenous Sin1 protein expression in HEK293 cells enhanced the activation of ERK1/2 by Ras. These data suggest that Sin1 is a mammalian Ras-inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号