共查询到20条相似文献,搜索用时 0 毫秒
1.
Disulfide-bonded discontinuous epitopes on the glycoprotein of vesicular stomatitis virus (New Jersey serotype). 下载免费PDF全文
Intrachain disulfide bonds between paired cysteines in the glycoprotein (G) of vesicular stomatitis virus (VSV) are required for the recognition of discontinuous epitopes by specific monoclonal antibodies (MAbs) (W. Keil and R. R. Wagner, Virology 170:392-407, 1989). Cleavage by Staphylococcus aureus V8 protease of the 517-amino-acid VSV-New Jersey G protein, limited to the glutamic acid at residue 110, resulted in a protein (designated GV8) with greatly retarded migration by polyacrylamide gel electrophoresis (PAGE) under nonreducing conditions. By Western blot (immunoblot) analysis, protein GV8 was found to lose discontinuous epitope IV, which maps within the first 193 NH2-terminal amino acids. These data, coupled with those obtained by PAGE migration of a vector-expressed, truncated protein (G1-193) under reducing and nonreducing conditions, lead us to postulate the existence of a major loop structure within the first 193 NH2-terminal amino acids of the G protein, possibly anchored by a disulfide bond between cysteine 108 and cysteine 169, encompassing epitope IV. Site-directed mutants in which 10 of the 12 cysteines were individually converted to serines in vaccinia virus-based vectors expressing these single-site mutant G proteins were also constructed, each of which was then tested by immunoprecipitation for its capacity to recognize epitope-specific MAbs. These results showed that mutations in NH2-terminal cysteines 130, 174, and, to a lesser extent, 193 all resulted in the loss of neutralization epitope VIII. A mutation at NH2-terminal cysteine 130 also resulted in the loss of neutralization epitope VII, as did a mutation at cysteine 108 to a lesser extent. Both epitopes VII and VIII disappeared when mutations were made in COOH-distal cysteine 235, 240, or 273, the general map locations of epitopes VII and VIII. These studies also reveal that distal, as well as proximal, cysteine residues markedly influence the disulfide-bond secondary structure, which ostensibly determines the conformational structure of the VSV-New Jersey G protein required for presentation of the major discontinuous epitopes recognized by neutralizing MAbs. 相似文献
2.
Previous work has shown that the mRNA encoding the vesicular stomatitis virus (VSV) glycoprotein (G) is bound to the rough endoplasmic reticulum (RER) and that newly made G protein is localized to the RER. In this paper, we have investigated the topology and processing of the newly synthesized G protein in microsomal vesicles. G was labeled with [35S]methionine ([35S]met), either by pulse-labeling infected cells or by allowing membrane-bound polysomes containing nascent G polipeptides to complete G synthesis in vitro. In either case, digestion of microsomal vesicles with any of several proteases removes approximately 5% (30 amino acids) from each G molecule. These proteases will digest the entire G protein if detergents are present during digestion. Using the method of Dintzis (1961, Proc. Natl. Acad. Sci. U. S. A. 47:247--261) to order tryptic peptides (8), we show that peptides lost from G protein by protease treatment of closed vesicles are derived from the carboxyterminus of the molecule. The newly made VSV G in microsomal membranes is glycosylated. If carbohydrate is removed by glycosidases, the resultant peptide migrates more rapidly on polyacrylamide gels than the unglycosylated, G0, form synthesized in cell-free systems in the absence of membranes. We infer that some proteolytic cleavage of the polypeptide backbone is associated with membrane insertion of G. Further, our findings demonstrate that, soon after synthesis, G is found in a transmembrane, asymmetric orientation in microsomal membranes, with its carboxyterminus exposed to the extracisternal, or cytoplasmic, face of the vesicles, and with most or all of its amino-terminal peptides and its carbohydrate sequestered within the bilayer and lumen of the microsomes. 相似文献
3.
Kenneth Lundström 《FEMS microbiology letters》1984,23(1):65-70
Abstract The molecularly cloned gene encoding the vesicular stomatitis virus (VSV) membrane glycoprotein G was modified and joined to a Bacillus subtilis secretion vector constructed from the plasmid pUB110 and containing the promoter and signal sequence regions of the α-amylase (a secretory protein) gene from Bacillus amyloliquefaciens . The regions encoding the NH2 -terminal signal peptide and the COOH-terminal hydrophobic transmembrane domains of the VSV gene were deleted to facilitate the secretion of the G protein in soluble form. The truncated G protein was found to be expressed in B. subtilis . The expression level was low, probably due to rapid proteolytic degradation of the protein and, contrary to what was expected, almost all of the protein remained cell-associated. 相似文献
4.
Carbohydrate structure of vesicular stomatitis virus glycoprotein. 总被引:20,自引:0,他引:20
5.
Detailed analysis on DEAE-Sephadex of the tryptic digestion products of the glycoprotein from vesicular stomatitis virus grown in HeLa suspension cultures revealed the presence of two major and several minor sugar-labeled species. The minor tryptic glycopeptides were converted to one of the two major glycopeptide species by treatment with neuraminidase. Thus, vesicular stomatitis virus glycoprotein contains only two oligosaccharide side chains that are heterogeneous in their sialic acid content. 相似文献
6.
Vesicular stomatitis virus (VSV) is composed of a ribonucleoprotein core surrounded by a lipid envelope presenting an integral glycoprotein (G). The homotrimeric VSV G protein exhibits a membrane fusion activity that can be elicited by low pH. The fusion event is crucial to entry into the cell and disassembly followed by viral replication. To understand the conformational changes involved in this process, the effects of high hydrostatic pressure and urea on VSV particles and isolated G protein were investigated. With pressures up to 3.0 kbar VSV particles were converted into the fusogenic conformation, as measured by a fusion assay and by the binding of bis-ANS. The magnitude of the changes was similar to that promoted by lowering the pH. To further understand the relationship between stability and conversion into the fusion-active states, the stability of the G protein was tested against urea and high pressure. High urea produced a large red shift in the tryptophan fluorescence of G protein whereas pressure promoted a smaller change. Pressure induced equal fluorescence changes in isolated G protein and virions, indicating that virus inactivation induced by pressure is due to changes in the G protein. Fluorescence microscopy showed that pressurized particles were capable of fusing with the cell membrane without causing infection. We propose that pressure elicits a conformational change in the G protein, which maintains the fusion properties but suppresses the entry of the virus by endocytosis. Binding of bis-ANS indicates the presence of hydrophobic cavities in the G protein. Pressure also caused an increase in light scattering of VSV G protein, reinforcing the hypothesis that high pressure elicits the fusogenic activity of VSV G protein. This "fusion-intermediate state" induced by pressure has minor changes in secondary structure and is likely the cause of nonproductive infections. 相似文献
7.
8.
A peptide corresponding to the amino-terminal 25 amino acids of the mature vesicular stomatitis virus glycoprotein has recently been shown to be a pH-dependent hemolysin. In the present study, we analyzed smaller constituent peptides and found that the hemolytic domain resides within the six amino-terminal amino acids. Synthesis of variant peptides indicates that the amino-terminal lysine can be replaced by another positively charged amino acid (arginine) but that substitution with glutamic acid results in the total loss of the hemolytic function. Peptide-induced hemolysis was dependent upon buffer conditions and was inhibited when isotonicity was maintained with mannitol, sucrose, or raffinose. In sucrose, all hemolytic peptides were also observed to mediate hemagglutination. The large 25-amino acid peptide is also a pH-dependent cytotoxin for mammalian cells and appears to effect gross changes in cell permeability. Conservation of the amino terminus of vesicular stomatitis virus and rabies virus suggests that the membrane-destabilizing properties of this domain may be important for glycoprotein function. 相似文献
9.
《Seminars in Virology》1993,4(2):101-107
Antigen processing and presentation is the complex series of steps involving numerous compartments of cells derived from multiple lineages. This collective process is central to the initiation of specific cellular immune responses. Internalization of foreign proteins or infectious agents, degradation of proteins to peptides, and transfer to 1a heterodimers which are then translocated to the cell surface, comprise the pathway. This can be blocked by drugs which interfere with compartment acidification (ammonium chloride, methylamine, chloroquine), protein synthesis (emetine), vesicle trafficking (brefeldin A), and microtubule metabolism (taxol, colchicine, nocadazole). 相似文献
10.
A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. 总被引:2,自引:10,他引:2 下载免费PDF全文
We have recently described an assay in which a temperature-sensitive mutant of vesicular stomatitis virus (VSV; mutant tsO45), encoding a glycoprotein that is not transported to the cell surface, can be rescued by expression of wild-type VSV glycoproteins from cDNA (M. Whitt, L. Chong, and J. Rose, J. Virol. 63:3569-3578, 1989). Here we examined the ability of mutant G proteins to rescue tsO45. We found that one mutant protein (QN-1) having an additional N-linked oligosaccharide at amino acid 117 in the extracellular domain was incorporated into VSV virions but that the virions containing this glycoprotein were not infectious. Further analysis showed that virus particles containing the mutant protein would bind to cells and were endocytosed with kinetics identical to those of virions rescued with wild-type G protein. We also found that QN-1 lacked the normal membrane fusion activity characteristic of wild-type G protein. The absence of fusion activity appears to explain lack of particle infectivity. The proximity of the new glycosylation site to a sequence of 19 uncharged amino acids (residues 118 to 136) that is conserved in the glycoproteins of the two VSV serotypes suggests that this region may be involved in membrane fusion. The mutant glycoprotein also interferes strongly with rescue of virus by wild-type G protein. The strong interference may result from formation of heterotrimers that lack fusion activity. 相似文献
11.
Vesicular stomatitis virus contains a single structural glycoprotein whose carbohydrate sequences are probably specified by the host cell. The glycopeptides derived by Pronase digestion of the glycoprotein of vesicular stomatitis virus grown in HeLa cells have an average molecular weight of 1,800. There are multiple oligosaccharide chains on the vesicular stomatitis virus glycoprotein with protein-carbohydrate linkages that are cleaved only by strong alkali under reducing conditions, suggesting that they contain asparagine and N-acetylglucosamine. The oligosaccharide moieties, in addition, appear to be heterogeneous in sequence on the basis of their mobilities during electrophoresis and their sensitivities to cleavage by an endoglycosidase. The carbohydrate-peptide linkage region of the major class of oligosaccharides of the vesicular stomatitis virus glycoprotein has the proposed sequence: (see article). 相似文献
12.
Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. 总被引:10,自引:0,他引:10
S W Park H K Lee T G Kim S K Yoon S Y Paik 《Biochemical and biophysical research communications》2001,289(2):444-450
We have developed the recombinant baculovirus pseudotyped with vesicular stomatitis virus (VSV) G protein. The VSV-G gene was under the control of the polyhedrin promoter so that it was expressed at high levels in infected insect cells but not in mammalian cells. The presence of VSV-G protein in purified baculovirus preparations was confirmed by Western analysis. This recombinant baculovirus also carried human AFP (alpha-fetoprotein) promoter for hepatocyte-specific gene expression. After an in vitro infection by a recombinant baculovirus carrying the luciferase gene under the control of human AFP promoter/enhancer (BacG-AFP-Luc(+)), the luciferase gene was expressed in AFP-producing Huh7, Hep3B, and HepG2 cell lines, but not in AFP-nonproducing cell lines. BacG-AFP-Luc(+) transduced with human hepatoma cells in vitro at an efficiency about fivefold greater than the recombinant baculovirus lacking VSV-G (the virus Bac-AFP-Luc(+)). The utilization of the AFP promoter/enhancer in a baculovirus vector could provide benefits in gene therapy applications. 相似文献
13.
Interferon alters intracellular transport of vesicular stomatitis virus glycoprotein 总被引:2,自引:0,他引:2
V K Singh R K Maheshwari G P Damewood C B Stephensen C Oliver R M Friedman 《Journal of biological regulators and homeostatic agents》1988,2(2):53-62
Double-label immunofluorescence staining studies in virus-infected subclone 11 of LB cells indicated that almost all of the vesicular stomatitis virus (VSV) glycoprotein (G) was plasma membrane-associated during the logarithmic phase of virus replication. In contrast, treatment with interferon (IFN) resulted in inhibition of VSV-G transport, so that almost all of the G remained associated with the Golgi complex (GC) at comparable times after infection. In both IFN-treated and control cells, G was resistant to treatment with the enzyme endo-beta-N-acetylglucosamine H (endo H) indicating that the bulk of the G had reached the trans compartment of the GC. 相似文献
14.
Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. 总被引:11,自引:13,他引:11 下载免费PDF全文
The nucleotide sequence of the mRNA encoding the glycoprotein from the New Jersey serotype of vesicular stomatitis virus (VSV) was determined from a cDNA clone containing the entire coding region. The sequence of 12 5'-terminal noncoding nucleotides present in the mRNA but not in the cDNA clone was determined from a primer extended to the 5' terminus of the mRNA. The mRNA is 1,573 nucleotides long (excluding polyadenylic acid) and encodes a protein of 517 amino acids. Only six nucleotides occur between the translation termination codon and the polyadenylic acid. Short homologies between the untranslated termini of this mRNA and the mRNAs of the Indiana serotype were found. The predicted protein sequence was compared with that of the glycoprotein of the Indiana serotype of VSV and with the glycoprotein of rabies virus, using a computer program which determines optimal alignment. An amino acid identity of 50.9% was found for the two VSV serotypes. Approximately 20% identity was found between the rabies virus and VSV New Jersey glycoproteins. The positions and sizes of the transmembrane domains, the signal sequences, and the glycosylation sites are identical in both VSV serotypes. Two of five serine residues which were possible esterification sites for palmitate in the glycoprotein from the Indiana serotype are changed to glycine residues in the glycoprotein from the New Jersey serotype. Because the glycoprotein of the New Jersey serotype does not contain esterified palmitate, we suggest that one or both of these residues are the probable esterification sites in the glycoprotein from the Indiana serotype. 相似文献
15.
Novella IS 《Current opinion in microbiology》2003,6(4):399-405
Vesicular stomatitis virus has been a preferred system to study evolution for several decades. New approaches to antiviral treatment, such as lethal mutagenesis, stem from investigations done with VSV. Recent work has shed new light in the way we view neutrality, a fundamental concept to understand the evolutionary history of RNA viruses. 相似文献
16.
Chang FK Sato N Kobayashi-Simorowski N Yoshihara T Meth JL Hamaguchi M 《Journal of molecular biology》2006,364(3):302-308
DBC2 is a tumor suppressor gene linked to breast and lung cancers. Although DBC2 belongs to the RHO GTPase family, it has a unique structure that contains a Broad-Complex/Tramtrack/Bric a Brac (BTB) domain at the C terminus instead of a typical CAAX motif. A limited number of functional studies on DBC2 have indicated its participation in diverse cellular activities, such as ubiquitination, cell-cycle control, cytoskeleton organization and protein transport. In this study, the role of DBC2 in protein transport was analyzed using vesicular stomatitis virus glycoprotein (VSVG) fused with green fluorescent protein. We discovered that DBC2 knockdown hinders the VSVG transport system in 293 cells. Previous studies have demonstrated that VSVG is transported via the microtubule motor complex. We demonstrate that DBC2 mobility depends also on an intact microtubule network. We conclude that DBC2 plays an essential role in microtubule-mediated VSVG transport from the endoplasmic reticulum to the Golgi apparatus. 相似文献
17.
Biological differences between vesicular stomatitis virus Indiana and New Jersey serotype glycoproteins: identification of amino acid residues modulating pH-dependent infectivity 下载免费PDF全文
We previously generated recombinant vesicular stomatitis viruses (VSV) based on the Indiana serotype genome which contained either the homologous glycoprotein gene from the Indiana serotype (VSIV-GI) or the heterologous glycoprotein gene from the New Jersey serotype (VSIV-GNJ). The virus expressing the GNJ gene was more pathogenic than the parental VSIV-GI virus in swine, a natural host (26). For the present study, we investigated the biological differences between the GI and GNJ proteins that may be related to the differences in pathogenesis between VSIV-GI and VSIV-GNJ. We show that the capacities of viruses with either the GNJ or GI glycoprotein to infect cultured cells differ depending on the pH. VSIV-GNJ could infect cells at acidic pHs, while the infectivity of VSIV-GI was severely reduced. VSIV-GNJ infection was also more sensitive to inhibition by ammonium chloride, indicating that the GNJ protein had a lower pH threshold for membrane fusion. We applied selective pressure to VSIV-GI by growing it at successively lower pH values and isolated variant viruses in which we identified amino acid changes that conferred low-pH-resistant infectivity. Repeated passage in cell culture at pH 6.8 resulted in the selection of a VSIV-GI variant (VSIV-6.8) that was similar to VSIV-GNJ regarding its pH- and ammonium chloride-dependent infectivity. Sequence analysis of VSIV-6.8 revealed that it had a single amino acid substitution in the amino-terminal region of the glycoprotein (F18L). This alteration was shown to be responsible for the observed phenotype by site-directed mutagenesis of a VSIV-GI full-length cDNA and analysis of the recovered engineered virus. A further adaptation of VSIV-6.8 to pHs 6.6 and 6.4 resulted in additional amino acid substitutions in areas of the glycoprotein that were not previously implicated in attachment or fusion. 相似文献
18.
We have altered the structure of the COOH-terminus of the vesicular stomatitis virus (VSV) glycoprotein (G) by introducing deletions into a cDNA clone encoding G protein. We examined the effects of these deletions on intracellular transport of G protein after expression of the deleted genes in eucaryotic cells under control of the SV40 late promoter. To prevent readthrough of translation into vector sequences, we introduced synthetic DNA linkers containing translation stop codons at the site of the deletion. G proteins that lacked the cytoplasmic domain and most of the transmembrane domain were secreted slowly from the cells. Deletion mutants affecting the structure of the cytoplasmic domain fell into two classes. The first class completely arrested transport of the protein to the cell surface at a stage prior to acquisition of complex oligosaccharides. The second class showed severely reduced rates of complex sugar addition although the proteins were eventually transported to the cell surface. Indirect immunofluorescence microscopy suggested that mutant proteins in both classes may accumulate in the rough endoplasmic reticulum. 相似文献
19.
Glycosylation of vesicular stomatitis virus glycoprotein in virus-infected HeLa cells. 总被引:12,自引:8,他引:12 下载免费PDF全文
Glycosylation of the envelope glycoprotein of vesicular stomatitis virus was examined using virus-infected HeLa cells that were pulse-labeled with radioactive sugar precursors. The intracellular sites of glycosylation and the stepwise elongation of the carbohydrate side chains of the G protein were monitored by membrane fractionation and gel filtration of Pronase-digested glycopeptides. The results with short pulses of sugar label (5 to 10 mtein linkage (glucosamine and mannose) are added to G which was associated with the rough endoplasmic reticulum-enriched membrane fraction, whereas the more distal sugars (galactose, sialic acid, fucose, and possibly more glucosamine) are added in the light-density internal membrane fraction. Accumulation of mature G was observed in the plasma membrane-enriched fraction. The gel filtration studies indicated that the initial glycosylation event may be the en bloc addition of a mannose and glucosamine oligomer, followed by the stepwise addition of the more distal sugars. 相似文献
20.
T Miki 《Microbiology and immunology》1981,25(6):585-594
Electrochemical properties of the glycoprotein of vesicular stomatitis virus (VSV) grown in Rous sarcoma virus (RSV)-transformed cells was compared with that of its counterpart grown in nontransformed cells. In DEAE-Sephadex column chromatography, the glycoproteins of VSV derived from transformed cells appeared more heterogeneous and had a tendency to elute with higher concentrations of NaCl than those from nontransformed cells. In isoelectric focussing, the glycoproteins of VSVs derived from transformed and nontransformed cells appeared as multiple components differing in the isoelectric point, and the glycoproteins from virus from transformed cells had isoelectric points that were more acidic than their counterparts from nontransformed cells. These results show that the glycoprotein of VSV consists of populations of molecules differing in charge and their isoelectric points were shifted to the acidic side by host cell transformation. 相似文献