首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apical membrane H+ extrusion in the renal outer medullary collecting duct, inner stripe, is mediated by a Na(+)-independent H+ pump. To examine the regulation of this transporter, cell pH and cell Ca2+ were measured microfluorometrically in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2, respectively. Apical membrane H+ pump activity, assayed as cell pH recovery from a series of acid loads (NH3/NH+4 prepulse) in the total absence of ambient Na+, initially occurred at a slow rate (0.06 +/- 0.02 pH units/min), which was not sufficient to account for physiologic rates of H+ extrusion. Over 15-20 min after the initial acid load, the rate of Na(+)-independent cell pH recovery increased to 0.63 +/- 0.09 pH units/min, associated with a steady-state cell pH greater than the initial pre-acid load cell pH. This pattern suggested an initial suppression followed by a delayed activation of the apical membrane H+ pump. Replacement of peritubular Na+ with choline or N-methyl-D-glucosamine resulted in an initial spike increase in cell Ca2+ followed by a sustained increase in cell Ca2+. The initial rate of Na(+)-independent cell pH recovery could be increased by elimination of the Na+ removal-induced sustained cell Ca2+ elevation by: (a) performing studies in the presence of 135 mM peritubular Na+ (1 mM peritubular amiloride used to inhibit basolateral membrane Na+/H+ antiport); (b) clamping cell Ca2+ low with dimethyl-BAPTA, an intracellular Ca2+ chelating agent; or (c) removal of extracellular Ca2+. Cell acidification induced a spike increase in cell Ca2+. The late acceleration of Na(+)-independent cell pH recovery was independent of Na+ removal and of the method used to acidify the cell, but was eliminated by prevention of the cell Ca2+ spike and markedly delayed by the microfilament-disrupting agent, cytochalasin B. This study demonstrates that peritubular Na+ removal results in a sustained elevation in cell Ca2+, which inhibits the apical membrane H+ pump. In addition, rapid cell acidification associated with a spike increase in cell Ca2+ leads to a delayed activation of the H+ pump. Thus, cell Ca2+ per se, or a Ca(2+)-activated pathway, can modulate H+ pump activity.  相似文献   

2.
Kinetics of Na(+) transport in necturus proximal tubule   总被引:4,自引:4,他引:0       下载免费PDF全文
The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.  相似文献   

3.
Membrane transport pathways for transplacental transfer of the water-soluble vitamin pantothenate were investigated by assessing the possible presence of a Na(+)-pantothenate cotransport mechanism in the maternal facing membrane of human placental epithelial cells. The presence of Na(+)-pantothenate cotransport was determined from radiolabeled tracer flux measurements of pantothenate uptake using preparations of purified brush-border membrane vesicles. Compared with other cations the imposition of an inward Na+ gradient stimulated vesicle uptake of pantothenate to levels approximately 40-fold greater than those observed at equilibrium. The observed stimulation of pantothenate uptake was not the result of indirect electrostatic coupling to an inside positive Na+ diffusion potential. In the absence of Na+ and pantothenate concentration gradients an inside negative voltage difference induced a Na(+)-dependent net influx of pantothenate, suggesting the presence of an electrogenic Na(+)-pantothenate cotransport mechanism. The effect of biotin on the kinetics of Na(+)-dependent pantothenate uptake and the effect of pantothenate on the kinetics of Na(+)-dependent biotin uptake suggested that placental absorption of biotin and pantothenate from the maternal circulation occurs by a common Na+ cotransport mechanism in apical brush-border membrane.  相似文献   

4.
In micromolar concentrations both antagonists suppressed CA2+ entry and simultaneously elevate the agonist-induced plasma membrane depolarization due to Na+ inward current via these channels. Potentiation by nicardipine of the Na+ current induced by the platelet-activating factor, was revealed. Both antagonists caused plasma membrane depolarization suppressed by Na+ and Ca2+ ions. The depolarization disappeared after substitution of NaCl by an isotonic solution of choline chloride. The antagonists nicardipine and verapamil seem to modulate the platelet receptor-operated channels suppressing Ca2+ entry and elevating Na+ current via these channels.  相似文献   

5.
1. The relation between p-aminohippurate uptake and the electrochemical potential gradient of Na+ (delta muNa+) across the peritubular membrane was examined in newt (Triturus pyrrhogaster) kidney. The delta muNa+ was modified by changing cellular Na+ concentration and/or lowering the electrical potential difference across the peritubular membrane (peritubular membrane potential) 2. Elevation of external K+ concentration or addition of alanine at 40 mM to the medium decreased the delta muNa+ mainly through the depolarization of the cells. Addition of 1 mM ouabain resulted in a decrease in the peritubular membrane potential and increase in cellular Na+ concentration, thus decrease in the delta muNa+. 3. p-Aminohippurate uptake decreased in proportion to the decrease in the delta muNa+ under all experimental conditions, indicating that the maintenance of the delta muNa+ is required for p-aminohippurate transport. 4. All three different experimental conditions, high medium K+ concentration, 40 mM alanine or 1 mM ouabain, increased the apparent Michaelis constant, Kt, without affecting the maximal uptake rate, V, for p-aminohippurate. These results suggests that the delta muNa+, largely the peritubular membrane potential, may affect the association and/or dissociation of p-aminohippurate and Na+ at both interfaces of the peritubular membrane of the proximal tubular cells.  相似文献   

6.
Microelectrode measurements of apical membrane potentials (Va) in absorptive cells of isolated Necturus intestine showed that, in the presence or absence of external Na+, 10 mM lysine added to the mucosal medium caused rapid depolarization followed by slower repolarization of Va. In Na+-free media the effects of 10 mM lysine on Va were abolished by 10 mM leucine which alone had no effect on Va under these conditions. This indicates that uncoupled electrodiffusion of lysine plays little or no role in lysine entry across the brush-border membrane. When external Na+ was greater than 10 mM the maximum depolarization of Va (delta Va') induced by [Lys] ranging from 5 to 30 mM was a simple saturable function of [Lys]. In Na+-free media, the relationship between delta Va' and [Lys] was biphasic. At first, delta Va' increased with increasing [Lys] reaching a maximum at 10 mM lysine. When [Lys] was further increased, delta Va' declined progressively to reach zero or near zero values. A single transport pathway model is proposed to account for rheogenic lysine entry across the brush-border membrane in the presence and absence of Na+. This postulates an amino acid transporter in the membrane with two binding sites. One is an amino acid site specific for the alpha-amino-alpha-carboxyl group. The other is a Na+ site. Neutral amino acids (e.g. leucine) compete with lysine for the amino acid site. The Na+ site has some affinity for the epsilon-amino group of lysine. When external Na+ is high the Na+ site is essentially 'saturated' with Na+ and formation of a mobile complex between an amino acid and the transporter depends in a saturable fashion on amino acid concentration. In Na+-free media or in media containing low [Na+]; at low external [Lys] the epsilon-amino group of a lysine molecule (simultaneously attached to the amino acid site) interacts with the Na+ site to form a mobile complex, as external [Lys] is increased, attachment of different lysine molecules to each site of an increasing number of transporters to form nontransported or poorly transported complexes results in substrate inhibition of the rheogenic lysine transport process.  相似文献   

7.
Membrane transport pathways for transplacental transfer of the water-soluble vitamin biotin were investigated by assessing the possible presence of a Na(+)-biotin cotransport mechanism in the maternal-facing membrane of human placental epithelial cells. The presence of Na(+)-biotin cotransport was determined from radiolabeled tracer flux measurements of biotin uptake using preparations of purified brush-border membrane vesicles. The imposition of an inwardly directed Na+ gradient stimulated vesicle uptake of biotin to levels approximately 25-fold greater than those observed at equilibrium. The voltage sensitivity of Na+ gradient-driven biotin uptake suggested Na(+)-biotin cotransport is electrogenic occurring with net transfer of positive charge. A kinetic analysis of the activation of biotin uptake by increasing Na+ was most consistent with an interaction of Na+ at 2 sites in the transport protein. Static head determinations used to identify the magnitude of opposing driving forces bringing flux through the cotransport mechanism to equilibrium indicated a coupling ratio of 2 Na+ per biotin. Substrate specificity studies using chemical analogues of biotin suggested both the terminal carboxylic acid of the valeric acid side chain and a second nucleus of anionic charge were important determinants for substrate interaction with the cotransport protein. Initial rate determinations of biotin uptake indicate biotin interacts with a single saturable site (Km = 21 microM) with a maximal transport rate of 4.5 nmol/mg/min. The results of this study provide evidence for an electrogenic Na(+)-biotin cotransport mechanism in the maternal-facing membrane of human placental epithelial cells.  相似文献   

8.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

9.
Transport systems y+, asc and ASC exhibit dual interactions with dibasic and neutral amino acids. For conventional Na(+)-dependent neutral amino acid system ASC, side chain amino and guanido groups bind to the Na+ site on the transporter. The topographically equivalent recognition site on related system asc binds harmaline (a Na(+)-site inhibitor) with the same affinity as asc (apparent Ki range 1-4 mM), but exhibits no detectable affinity for Ha. Although also classified as Na(+)-independent, dibasic amino acid transport system y+ accepts neutral amino acids when Na+ or another acceptable cation is also present. This latter observation implies that the y+ translocation site binds Na+ and suggests possible functional and structural similarities with ASC/asc. In the present series of experiments with human erythrocytes, system y(+)-mediated lysine uptake (5 microM, 20 degrees C) was found to be 3-fold higher in isotonic sucrose medium than in normal 150 mM NaCl medium. This difference was not a secondary consequence of changes in membrane potential, but resulted from Na+ functioning as a competitive inhibitor of transport. Apparent Km and Vmax values for lysine transport at 20 degrees C were 15.2 microM and 183 mumol/l cells per h, respectively, in sucrose medium and 59.4 microM and 228 mumol/l cells per h in Na+ medium. Similar results were obtained with y+ in erythrocytes of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), indicating that Na(+)-inhibition is a general property of this class of amino acid transporter. At a permeant concentration of 5 microM, the IC50 value for Na(+)-inhibition of lysine uptake by human erythrocytes was 27 mM. Other inorganic and organic cations, including K+ and guanidinium+, also inhibited transport. In parallel with its actions on ASC/asc harmaline competitively inhibited lysine uptake by human cells in sucrose medium. As predicted from mutually competitive binding to the y+ translocation site, the presence of 150 mM Na+ increased the harmaline inhibition constant (Ki) from 0.23 mM in sucrose medium to 0.75 mM in NaCl medium. We interpret these observations as further evidence that y+, asc and ASC represent a family of closely related transporters with a common evolutionary origin.  相似文献   

10.
A heteromeric integral membrane protein, Na+/K+ATPase is composed of two polypeptides, alpha and beta, and is active in many cell types, including testis and spermatozoa. It is a well-known ion transporter, but binding of ouabain, a specific inhibitor of Na+/K+ATPase, to Na+/K+ATPase in somatic cells initiates responses that are similar to signaling events associated with bovine sperm capacitation. The objectives of the present study were to demonstrate the presence of Na+/K+ATPase in bovine sperm and to investigate its role in the regulation of bovine sperm capacitation. The presence of Na+/K+ATPase in sperm from mature Holstein bulls was demonstrated by immunoblotting and immunocytochemistry using a monoclonal antibody developed in mouse against the beta 1 polypeptide of Na+/K+ATPase. Binding of ouabain to Na+/K+ATPase inhibited motility (decreased progressive motility, average path velocity, and curvilinear velocity) and induced tyrosine phosphorylation and capacitation but did not increase intracellular calcium levels in spermatozoa. Furthermore, binding of ouabain to Na+/K+ATPase induced depolarization of sperm plasma membrane. Therefore, binding of ouabain to Na+/K+ATPase induced sperm capacitation through depolarization of sperm plasma membrane and signaling via the tyrosine phosphorylation pathway without an appreciable increase in intracellular calcium. To our knowledge, this is the first report concerning the signaling role of Na+/K+ATPase in mammalian sperm capacitation.  相似文献   

11.
The mechanism of basolateral membrane base transport was examined in the in vitro microperfused rabbit proximal convoluted tubule (PCT) in the absence and presence of ambient CO2/HCO3- by means of the microfluorometric measurement of cell pH. The buffer capacity of the cells measured using rapid NH3 washout was 42.8 +/- 5.6 mmol.liter-1.pH unit-1 in the absence and 84.6 +/- 7.3 mmol.liter-1.pH unit-1 in the presence of CO2/HCO3-. In the presence of CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by peritubular 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS). In the absence of exogenous CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 induced a proton flux of 643 +/- 51 pmol.mm-1.min-1 in the presence of exogenous CO2/HCO3- and 223 +/- 27 pmol.mm-1.min-1 in its absence. Lowering bath Na from 147 to 0 mM induced proton fluxes of 596 +/- 77 pmol.mm-1.min-1 in its absence. The cell acidification induced by lowering bath pH or bath Na in the absence of CO2/HCO3- was inhibited by peritubular SITS or by acetazolamide, whereas peritubular amiloride had no effect. In the absence of exogenous CO2/HCO3-, cyanide blocked the cell acidification induced by bath Na removal, but was without effect in the presence of exogenous CO2/HCO3-. We reached the following conclusions. (a) The basolateral Na/base n greater than 1 cotransporter in the rabbit PCT has an absolute requirement for CO2/HCO3-. (b) In spite of this CO2 dependence, in the absence of exogenous CO2/HCO3-, metabolically produced CO2/HCO3- is sufficient to keep the transporter running at 30% of its control rate in the presence of ambient CO2/HCO3-. (c) There is no apparent amiloride-sensitive Na/H antiporter on the basolateral membrane of the rabbit PCT.  相似文献   

12.
The purpose of this study was to examine effects of tunicamycin (TM), which inhibits core glycosylation of the beta-subunit, on functional expression of the Na(+)-K+ pump in primary cultures of embryonic chick skeletal muscle. Measurements were made of specific-[3H]-ouabain binding, ouabain-sensitive 86Rb uptake, resting membrane potential (Em), and electrogenic pump contribution to Em (Ep) of single myotubes with intracellular microelectrodes. Growth of 4-6-day-old skeletal myotubes in the presence of TM (1 microgram/ml) for 21-24 hr reduced the number of Na(+)-K+ pumps to 60-90% of control. Na(+)-K+ pump activity, the level of resting Em and Ep were also reduced significantly by TM. In addition, TM completely blocked the hyperpolarization of Em induced in single myotubes by cooling to 10 degrees C and then re-warming to 37 degrees C. Effects of tunicamycin were compared with those of tetrodotoxin (TTX; 2 x 10(-7) M for 24 hr), which blocks voltage-dependent Na+ channels. TM produced significantly greater decreases in ouabain-binding and Em than did TTX, findings that indicate that reduced Na(+)-K+ pump expression was not exclusively secondary to decreased intracellular Na+, the primary regulator of pump synthesis in cultured muscle. Similarly, effects of TM were significantly greater than those of cycloheximide, which inhibits protein synthesis by 95%. These findings demonstrate that effects were not due to inhibition of protein synthesis. We conclude that glycosylation of the Na(+)-K+ pump beta-subunit is required for full physiological expression of pump activity in skeletal muscle.  相似文献   

13.
Peritoneal rat macrophages expressed solely an Na(+)-dependent, concentrative nucleoside transporter, which possesses a single Na(+)-binding site and transports purine nucleosides and uridine but not thymidine or deoxycytidine. The Michaelis-Menten constants for formycin B and Na+ were about 6 microns and 14 mM, respectively, and the estimated Na+:formycin B stoichiometry was 1:1. Rat macrophages accumulated 5 microM formycin B to a steady-state level exceeding that in the medium by about 500-fold during 60 min of incubation at 37 degrees C. Concentrative formycin B transport was resistant to inhibition by nitrobenzylthioinosine, lidoflazine, dilazep and nifedipine, but was slightly inhibited by high concentrations of dipyridamole (greater than 10 microM) and probenecid (greater than 100 microM). Mouse peritoneal macrophages and lines of mouse macrophages and normal rat kidney cells expressed Na(+)-dependent, active nucleoside transport but in addition significant Na(+)-independent, facilitated nucleoside transport. Facilitated nucleoside transport in these cells was sensitive to inhibition by nitrobenzylthioinosine, dilazep and dipyridamole. The presence of these inhibitors greatly enhanced the concentrative accumulation of formycin B by these cells by inhibiting the efflux via the facilitated transporter of the formycin B actively transported into the cells. Whereas rat macrophages lacked high-affinity nitrobenzylthioinosine-binding sites, mouse macrophages and normal rat kidney cells possessed about 10,000 such sites/cell. Rat and mouse erythrocytes, rat lymphocytes, and lines of Novikoff rat hepatoma cells, Chinese hamster ovary cells, Mus dunni cells and embryonic monkey kidney cells expressed only facilitated nucleoside transport.  相似文献   

14.
We have studied the mechanism of Na+ deprivation-induced catecholamine secretion from freshly isolated bovine adrenal chromaffin cells. Na+ deprivation-induced catecholamine secretion depended on free extracellular Ca2+ concentrations and was almost parallel to 45Ca2+ influx into the cells under various experimental conditions. Furthermore, Na+ deprivation-induced 45Ca2+ influx and catecholamine secretion were actually induced by a relative Na+ concentration gradient across the plasma membrane, but not by simple omission of Na+ from the medium. These results indicate that the deprivation of Na+ from the medium changes the relative Na+ gradient across the plasma membrane and results in Ca2+ influx via a reverse mode of Na(+)-Ca(2+) exchange rather than by inducing Ca2+ entry through Ca2+ channels by eliminating the competition between extracellular Na+ and Ca2+.  相似文献   

15.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

16.
P S Liu  L S Kao 《Cell calcium》1990,11(9):573-579
Bovine adrenal chromaffin cells were loaded with Na+ via either acetylcholine receptor-associated ion channels or voltage-sensitive Na+ channels. There were increases in [Ca2+]i, 45Ca2+ uptake and catecholamine secretion in both types of Na(+)-loaded cells relative to control cells in which Na+ loading had been prevented by hexamethonium and tetrodotoxin, respectively. These results show the presence of Na(+)-dependent Ca2+ influx activity in chromaffin cells which is probably mediated by the reverse mode of a Na+/Ca2+ exchanger.  相似文献   

17.
Citrate transport via CitS of Klebsiella pneumoniae has been shown to depend on the presence of Na+. This transport system has been expressed in Escherichia coli, and uptake of citrate in E. coli membrane vesicles via this uptake system was found to be an electrogenic process, although the pH gradient is the main driving force for citrate uptake (M. E. van der Rest, R. M. Siewe, T. Abee, E. Schwartz, D. Oesterhelt, and W. N. Konings, J. Biol. Chem. 267:8971-8976, 1992). Analysis of the affinity constants for the different citrate species at different pH values of the medium indicates that H-citrate2- is the transported species. Since the electrical potential across the membrane is a driving force for citrate transport, this indicates that transport occurs in symport with at least three monovalent cations. Citrate efflux is stimulated by Na+ concentrations of up to 5 mM but inhibited by higher Na+ concentrations. Citrate exchange, however, is stimulated by all Na+ concentrations, indicating sequential events in which Na+ binds before citrate for translocation followed by a release of Na+ after release of citrate. CitS has, at pH 6.0 and in the presence of 5 mM citrate on both sides of the membrane, an apparent affinity (K(app)) for Na+ of 200 microM. The Na+/citrate stoichiometry was found to be 1. It is postulated that H-citrate2- is transported via CitS in symport with one Na+ and at least two H+ ions.  相似文献   

18.
To understand the mechanism of Na+ movement through the force-generating units of the Na(+)-driven flagellar motors of Vibrio alginolyticus, the effect of intracellular Na+ concentration on motor rotation was investigated. Control cells containing about 50 mM Na+ showed good motility even at 10 mM Na+ in the medium, i.e. in the absence of an inwardly directed Na+ gradient. In contrast, Na(+)-loaded cells containing about 400 mM Na+ showed very poor motility at 500 mM Na+ in the medium, i.e. even in the presence of an inwardly directed Na+ gradient. The membrane potential of the cells, which is a major driving force for the motor under these conditions, was not detectably altered, and consistently with this, Na(+)-coupled sucrose transport was only partly reduced in the Na(+)-loaded cells. Motility of the Na(+)-loaded cells was restored by decreasing the intracellular Na+ concentration, and the rate of restoration of motility correlated with the rate of the Na+ decrease. These results indicate that the absolute concentration of the intracellular Na+ is a determinant of the rotation rate of the Na(+)-driven flagellar motors of V. alginolyticus. A simple explanation for this phenomenon is that the force-generating unit of the motor has an intracellular Na(+)-binding site, at which the intracellular Na+ kinetically interferes with the rate of Na+ influx for motor rotation.  相似文献   

19.
Oligomycin reduced the fluorescence intensity of an N-(p-(2-benzimidazoly)phenyl) maleimide (BIPM) probe at Cys-964 of the alpha-chain of pig kidney Na+,K(+)-ATPase with increase in the concentration of Na+ with a Hill coefficient of nh = 0.77 with Kh = 231 mM. The maximum fluorescence decrease was around 80% of the value observed after accumulation of ADP-sensitive phosphoenzyme (E1P) in the presence of 2 M Na+. The addition of Mg2+ and ATP with Na+ or choline chloride to give the same final ligand concentration to the Na(+)-enzyme-oligomycin complex formed with 16 mM Na+ + 1,984 mM choline chloride or 2 M Na+ induced rapid phosphorylation (20 or 21/s) and slower fluorescence decrease (12.1 +/- 1.2 or 10.1 +/- 3.2/s). These additions to the Na(+)-enzyme complex formed under the former or the latter conditions induced slow phosphorylation (13/s) prior to a much slower fluorescence decrease (3.4 +/- 0.3 or 8.6 +/- 0.7/s). The addition of Ca2+ and ATP to these enzyme complexes induced rapid fluorescence changes (21-11/s) followed by one order of magnitude slower rates of phosphorylation (1.5-1.3 s). These data suggest that the decrease in BIPM fluorescence induced by ATP with Ca2+ or with Mg2+, reflects the change of the Na+ binding state before or after the formation of E1P, respectively.  相似文献   

20.
In glucose-deprived cerebellar granule cells, substitution of extracellular Na+ with Li+ or Cs+ prevented N-methyl-D-aspartate (NMDA)-induced excitotoxicity. NMDA stimulated 45Ca2+ accumulation and ATP depletion in a Na-dependent manner, and caused neuronal death, even if applied while Na,K-ATPase was inhibited by 1 mM ouabain. The cells treated with NMDA in the presence of ouabain accumulated sizable 45Ca2+ load but most of them failed to elevate cytosolic [Ca2+] upon mitochondrial depolarization. Na/Ca exchange inhibitor, KB-R7943, inhibited Na-dependent and NMDA-induced 45Ca2+ accumulation but only if Na,K-ATPase activity was compromised by ouabain. In cells energized by glucose and exposed to NMDA without ouabain, KB-R7943 reduced NMDA-elicited ionic currents by 19% but failed to inhibit 45Ca2+ accumulation. It appears that a large part of NMDA-induced Ca2+ influx in depolarized and glucose-deprived cells is mediated by reverse Na/Ca exchange. A high level of reverse Na/Ca exchange operation is maintained by a sustained Na+ influx via NMDA channels and depolarization of the plasma membrane. In cells energized by glucose, however, most Ca2+ enters directly via NMDA channels because Na,K-ATPase regenerating Na+ and K+ concentration gradients prevents Na/Ca exchange reversal. Since under these conditions Na/Ca exchange extrudes Ca2+, its inhibition destabilizes Ca2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号