首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternating currents were measured through transmembrane ion channels formed by Staphylococcus aureus alpha-hemolysin proteins in planar bilayer membranes as part of an investigation to determine the channel's frequency response and the appropriateness of an equivalent circuit commonly used to model electrical interactions at the surface of cells. The experimental approach includes a novel method for separating the alternating current through one or more channels, which is conductive in nature, from the capacitively coupled current through the membrane. Separation of the conductive and capacitive alternating currents made it possible to measure the frequency response of the alpha-hemolysin channels. The results of the study are consistent with an equivalent circuit of a membrane capacitor in parallel with one or more channel resistors over the frequency range 30-120 Hz. The possible usefulness of frequency response data for ion channels in cell membranes during investigations of biological effects of time-varying magnetic fields is briefly discussed.  相似文献   

2.
The transverse electrical impedance of single frog skeletal muscle fibers was measured at 31 frequencies that ranged from 1 to 100,000 Hz. Each fiber was bathed entirely in Ringer's solution, but it was positioned so that a central length of 5 mm was in a hollow plastic disk and was electrically isolated from the ends of the fiber. The diameter of the segment of the fiber in the disk was measured and then the segment was pressed from opposite sides by two insulating wedges. Electrical current was passed transversely through the segment between two platinum-platinum black electrodes that were located in the pools of Ringer's solution within the disk. The results were corrected for stray parallel capacitance, series resistance of the Ringer's solution between the fiber and the electrodes, parallel shunt resistance around the fiber, and the phase shift of the measuring apparatus. A nonlinear least-squares routine was used to fit a lumped equivalent circuit to the data from six fibers. The equivalent circuit that was chosen for the fibers contained three parallel branches; each branch was composed of a resistor and a capacitor in series. The model also included a seventh adjustable parameter that was designed to account for the degree of compression of the fibers by the insulating wedges. The branches of the equivalent circuit were assumed to represent the electrical properties of: (a) the myoplasm in series with the membrane capacitance that was exposed directly to the pools of Ringer's solution; (b) the capacitance and series resistance of the transverse tubules that were exposed directly to the pools of Ringer's solution; (c) the membrane capacitance in series with the shunt resistance between the fibers and the insulating wedges. The results gave no indication that current entered the sarcoplasmic reticulum.  相似文献   

3.
In voltage-clamped epithelia the cell membrane potential transient during a + 10-mV transepithelial pulse conforms to the expected behavior for a series combination of two linear resistance-capacitance (RC) circuits. The evolution of the cell potential is characterized by a single time constant with values of 30-130 ms in frog skin and Necturus gallbladder. These observations have important consequences for the measurement of cell membrane resistance ratios and the interpretation of current-voltage relations.  相似文献   

4.
5.
Impedance profiles of peripheral and central neurons   总被引:1,自引:0,他引:1  
The electrical impedance of trigeminal ganglion cells (in vivo) and hippocampal CA1 neurons (in vitro) of guinea pigs was measured in the frequency range of 5-1250 Hz using intracellular recording techniques with single microelectrodes and computerized methodology. The transfer functions of the electrode and the electrode-neuron system were computed from the ratio of fast Fourier transforms of the output voltage response from the neuron and input current composed of sine waves with rapidly increasing frequency which displaced membrane potential by 2-5 mV. We believe these to be the first measurements of complex impedance and transfer functions in peripheral and central neurons of vertebrates and the first use of such input current functions. The majority of trigeminal ganglion cells did not exhibit electrical behaviour ascribable to a simple resistance-capacitance (RC) circuit but showed a hump at low frequencies (5-250 Hz) in the computed transfer function, probably attributable to resonance. The transfer function in less than 20% of the trigeminal neurons could be fitted approximately to a theoretical transfer function (resistance in series with a parallel RC circuit model) providing values for electrode resistance, effective input resistance, and effective input capacitance. The transfer functions measured in hippocampal CA1 neurons were characterized by a rapid fall-off in the low frequency range (less than 200 Hz). Impedance locus plots approximate the locus corresponding to a series RC circuit in parallel with a parallel RC circuit.  相似文献   

6.
The study and achievement of a discontinuous feedback amplifier to measure membrane potentials and currents in frog atrial fibres using the double sucrose gap technique was achieved. It was shown that, with the present device, the effects of the resistance in series with the membrane resistance and the membrane capacity on the measure of cardiac membrane potentials and fast currents are markedly reduced.  相似文献   

7.
The input impedance of muscle fibers of the crab was determined with microelectrodes over the frequency range 1 cps to 10 kc/sec. Care was taken to analyze, reduce, and correct for capacitive artifact. One dimensional cable theory was used to determine the properties of the equivalent circuit of the membrane admittance, and the errors introduced by the neglect of the three dimensional spread of current are discussed. In seven fibers the equivalent circuit of an element of the membrane admittance must contain a DC path and two capacitances, each in series with a resistance. In two fibers, the element of membrane admittance could be described by one capacitance in parallel with a resistance. In several fibers there was evidence for a third very large capacitance. The values of the elements of the equivalent circuit depend on which of several equivalent circuits is chosen. The circuit (with a minimum number of elements) that was considered most reasonably consistent with the anatomy of the fiber has two branches in parallel: one branch having a resistance Re in series with a capacitance Ce; the other branch having a resistance Rb in series with a parallel combination of a resistance Rm and a capacitance Cm. The average circuit values (seven fibers) for this model, treating the fiber as a cylinder of sarcolemma without infoldings or tubular invaginations, are Re = 21 ohm cm2; Ce = 47 µf/cm2; Rb = 10.2 ohm cm2; Rm = 173 ohm cm2; Cm = 9.0 µf/cm2. The relation of this equivalent circuit and another with a nonminimum number of circuit elements to the fine structure of crab muscle is discussed. In the above equivalent circuit Rm and Cm are attributed to the sarcolemma; Re and Ce, to the sarcotubular system; and Rb, to the amorphous material found around crab fibers. Estimates of actual surface area of the sarcolemma and sarcotubular system permit the average circuit values to be expressed in terms of unit membrane area. The values so expressed are consistent with the dielectric properties of predominantly lipid membranes.  相似文献   

8.
A study was made of the effect of anesthetic concentrations of pentobarbital on sodium permeability of the myocardial cell membranes by recording action potentials of the frog myocardial cells, tension fixation by the double sucrose bridge method on frog atrial trabecula and by the voltage clamp method during tension fixation on a rat isolated myocardial cell membrane. It is concluded that pentobarbital has no effect on rapid sodium current of the myocardial cell membranes.  相似文献   

9.
Compensation for resistance in series with excitable membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Extracellular resistance in series (Rs) with excitable membranes can give rise to significant voltage errors that distort the current records in voltage-clamped membranes. Electrical methods for measurement of and compensation for such resistances are described and evaluated. Measurement of Rs by the conventional voltage jump in response to a current step is accurate but the measurement of sine-wave admittance under voltage-clamp conditions is better, having about a fivefold improvement in resolution (+/- 0.1 omega cm2) over the conventional method. Conventional feedback of the membrane current signal to correct the Rs error signal leads to instability of the voltage clamp when approximately two-thirds of the error is corrected. We describe an active electronic bridge circuit that subtracts membrane capacitance from the total membrane current and allows full, yet stable, compensation for the voltage error due to ionic currents. Furthermore, this method provides not only fast and accurate control of the membrane potential in response to a command step, but also fast recovery following an abrupt change in the membrane conductance. Marked changes in the kinetics and amplitude of ionic currents resulting from full compensation for Rs are shown for several typical potential patterns.  相似文献   

10.
The hypothesis that the nexus is a specialized structure allowing current flow between cell interiors is corroborated by concomitant structural changes of the nexus and changes of electrical coupling between cells due to soaking in solutions of abnormal tonicity. Fusiform frog atrial fibers are interconnected by nexuses. The nexuses, desmosomes, and regions of myofibrillar attachment of this muscle are not associated in a manner similar to intercalated discs of guinea pig cardiac muscle. Indeed, nexuses occur wherever cell membranes are closely apposed. Action potentials of frog atrial bundles detected extracellularly across a sucrose gap change from monophasic to diphasic when the gap is shunted by a resistor. This indicates that action potentials are transmitted across the gap when sufficient excitatory current is allowed to flow across the gap. When the sucrose solution in the gap is made hypertonic, propagation past the gap is blocked and the resistance between the cells in the gap increases. Electron micrographs demonstrate that the nexuses of frog atrium and guinea pig ventricle are ruptured by hypertonic solutions.  相似文献   

11.
The acetylcholine reversal potential (Er) of cultured rat myotubes is -3mV. When activated, the receptor is permeable to K+ and Na+, but not to Cl- ions. Measurement of Er in Tris+-substituted, Na-free medium also indicated a permeability to Tris+ ions. Unlike adult frog muscle the magnitude of Er was insensitive to change in external Ca++ (up to 30 mM) or to changes in external pH (between 6.4 and 8.9). The equivalent circuit equation describing the electrical circuit composed of two parallel ionic batteries (EK and ENa) and their respective conductances (gK and gNa), which has been generally useful in describing the Er of adult rat and frog muscle, could also be applied to rat myotubes when Er was measured over a wide range of external Na+ concentrations. The equivalent circuit equation could not be applied to myotubes bathed in media of different external K+ concentrations. In this case, the Er was more closely described by the Goldman constant field equation. Under certain circumstances, it is known that the receptor in adult rat and frog muscle can be induced to reversibly shift from behavior described by the equivalent circuit equation to that described by the Goldman equation. Attempts to similarly manipulate the responses of cultured rat myotubes were unsussessful. These trials included a reduction in temperature (15 degress C), partial alpha-bungarotoxin blodkade, and activation of responses with the cholinergic agonist, decamethonium.  相似文献   

12.
This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport.  相似文献   

13.
Some of the linear electrical properties of frog sartorius muscle have been investigated in Ringer's fluid and in a Ringer fluid made hypertonic by the addition of sucrose or NaCl. Electrical constants were determined from measurements of the phase angle of the admittance of a fiber for an applied alternating current, from measurements of the voltage induced by an inward pulse of current, and from measurements of the conduction velocity of the action potential and the time constant of its foot. The dilation of the transverse tubular system induced by the sucrose hypertonic Ringer fluid was correlated with the change in the electrical constants. From this it is concluded that a two time constant equivalent circuit for the membrane, as proposed by Falk and Fatt, is in good agreement with our results. Both the area of the membrane of the transverse tubular system, and the capacity (ce) attributed to it, increased in the sucrose hypertonic Ringer fluid. The resistance re, which is in series with ce, did not fall when the transverse tubular system was dilated and probably is not located in that system.  相似文献   

14.
An improved vaseline gap voltage clamp for skeletal muscle fibers   总被引:39,自引:20,他引:19       下载免费PDF全文
A Vaseline gap potentiometric recording and voltage clamp method is developed for frog skeletal muscle fibers. The method is based on the Frankenhaeuser-Dodge voltage clamp for myelinated nerve with modifications to improve the frequency response, to compensate for external series resistance, and to compensate for the complex impedance of the current-passing pathway. Fragments of single muscle fibers are plucked from the semitendinosus muscle and mounted while depolarized by a solution like CsF. After Vaseline seals are formed between fluid pools, the fiber ends are cut once again, the central region is rinsed with Ringer solution, and the feedback amplifiers are turned on. Errors in the potential and current records are assessed by direct measurements with microelectrodes. The passive properties of the preparation are simulated by the "disk" equivalent circuit for the transverse tubular system and the derived parameters are similar to previous measurements with microelectrodes. Action potentials at 5 degrees C are long because of the absence of delayed rectification. Their shape is approximately simulated by solving the disk model with sodium permeability in the surface and tubular membranes. Voltage clamp currents consist primarily of capacity currents and sodium currents. The peak inward sodium current density at 5 degrees C is 3.7 mA/cm2. At 5 degrees C the sodium currents are smoothly graded with increasing depolarization and free of notches suggesting good control of the surface membrane. At higher temperatures a small, late extra inward current appears for small depolarizations that has the properties expected for excitation in the transverse tubular system. Comparison of recorded currents with simulations shows that while the transverse tubular system has regenerative sodium currents, they are too small to make important errors in the total current recorded at the surface under voltage clamp at low temperature. The tubules are definitely not under voltage clamp control.  相似文献   

15.
The effective membrane conductance and capacity of lobster muscle fibres was measured by a three-intracellular-microelectrode voltage clamp technique. Conductance values agreed well with those determined under current clamp, by means of the 'short' cable equations. Reversible increases in conductance evoked by gamma-aminobutyric acid (GABA) were reflected by differences (delta V) in electrotonic potential amplitude recorded at the centre, and midway between the centre and fibre end respectively. GABA dose--conductance curves derived from cable theory or from delta V measurements were virtually identical. The effective capacity (ceff), determined from the area beneath the 'on' delta V capacity transient, yielded values of the membrane time constant consistently lower than those obtained by the graphical method of E. Stefani & A.B. Steinbach (J. Physiol., London. 203, 383-401 (1969)); one possible explanation for this discrepancy is discussed. In the presence of GABA, the effective capacity was reduced in a dose-related manner. The results were interpreted in terms of an equivalent circuit in which surface membrane was arranged in parallel with cleft-tubular membrane of finite conductance, charged through an access resistance. GABA was though to be decreasing ceff by selectively increasing the conductance of the cleft-tubular membranes.  相似文献   

16.
An equivalent electrical circuit model for Na transport across epithelial tissues under steady-state conditions, which incorporates the flows and forces across the two limiting membranes and the paracellular pathway, is described. The analysis of electrophysiologic data obtained on rabbit colon within the framework of this model provides information regarding the thermodynamic activity of cell Na and the resistance offered by the mucosal membrane to Na entry. The interpretation of the data dealing with the active extrusion of Na from the cell across the basolateral membrane awaits more detailed information regarding the pump mechanism responsible for this movement; until then, the electromotive force across the basolateral membrane and the resistance of that barrier must be considered phenomenologic parameters that relate the Na current to the observed electrical potential difference.  相似文献   

17.
J Connor  L Barr    E Jakobsson 《Biophysical journal》1975,15(10):1047-1067
The electrical behavior of small single frog atrial trabeculae in the double sucrose gap has been investigated. The currents injected during voltage clamp experiments did not behave as predicted from the assumption of spatial uniformity of the voltage across a Hodgkin-Huxley membrane. Much of the difference is due to the geometrical complexities of this tissue. Nonetheless, two transient inward currents have been identified, the faster of which is blocked by tetrodotoxin (TTX). The magnitude of the slower transient varies markedly between preparations but always increases in a given preparation with increase of external calcium. The fast transient current traces, at small to intermediate depolarizations, are often marred by the presence of notches and secondary peaks due most probably to the loss of space clamp conditions. In many preparations these could be removed by reducing the current magnitude through application of a partially-blocking dose of TTX. Conversely, in the preparations whose fast transient was fully blocked by TTX, notches and secondary peaks in the slow transient could by induced through increasing calcium concentration and thereby the slow current magnitude. Previously used techniques for the measurement of the reversal potential of the fast inward transient have been shown to be invalid. In so far as they can be measured, the reversal potentials of the fast and slow inward transient are in the same neighborhood, i.e. around 120 mV from rest. The true values may be quite a bit apart. The total charge flow in the capacitive transient was measured for different sized nodes and preparations. From these data and estimates of plasma membrane area per unit trabecular volume, specific membrane capacitances of around 3 muF/cm2 were calculated for small bundles. The apparent ion current densities on this basis are approximately 1/10 of those measured in axons. The capacitive current occurring in small bundles decayed as the sum of at least three exponential functions of time. On the basis of these data and the anomalously large stable node widths, we suggest a coaxial core model of the preparation with the inner elements in series with an additional large extracellular resistance.  相似文献   

18.
The effect of 1-deamino-8-D-arginine-vasopressin, dDAVP, the synthetic analogue of vasopressin, upon the active sodium transport across the frog skin was studied using standard microelectrode technique and compared with the effect of synthetic arginine-vasopressin, AVP. dDAVP applied to the basolateral side of the epithelium stimulated the active sodium transport as reflected by the increase of short-circuit current, Isc, and transepithelial electrical potential difference, Voc. Potential difference across both the apical, Vo, and the basolateral, Vi, cell membranes decreased. The driving force of transepithelial sodium transport, ENa, did not change. The transepithelial electrical resistance, Rt, ohmic resistance of the active sodium transport, RNa, and apical cell membrane resistance, Ro, rapidly decreased, while the resistance of the basolateral cell membrane, Ri, and the resistance of the shunt pathway, Rs, remained unchanged. It is concluded that dDAVP primarily increases sodium permeability of the apical cell membrane which subsequently stimulates sodium pump activity. This action is similar to that of AVP.  相似文献   

19.
刘文兆 《生态学报》2005,25(11):2947-2953
把土壤-植物系统水分运移作为一维水流运动由阻容电路进行模拟,在于将D arcy-R ichards方程从对单点的描述扩展到对一段流路的描述。由此出发,考虑到水流的非稳态性,某一流路的水阻定义为其水势差与平均流量之比,水容为其贮水量对平均水势的导数。与D arcy-R ichards方程相对应,水阻、时间常数分别为导水度、水分扩散度的倒数,相应地单位化的水阻率、比时间常数分别为导水率、水分扩散率的倒数。把SP系统沿水流通道分为若干部分,每一局部的水阻与其水容相并联,各局部间相串联。在此基础上,文章给出了土壤-植物系统水流模拟通式、总水容与分水容间的关系式、总水阻与分水阻间的关系式及特定条件下叶水势随时间变化的关系式。  相似文献   

20.
The properties of artificial lipid membranes modified by frog offactory preparation obtained by ultrasonic treatment of frog olfactory tissues were investigated. Out of the 24 odorous substances which were tested five active stimulants were identified each inducing a resistance drop of the modified membrane when added to the cell. The studies of this effect in solutions with different salt content demonstrated that the decrease in resistance resulted most probably from an increased membrane permeability to Na+ ions. The dyes did not affect the resistance of modified membranes. Mercury bichloride at the concentration of 5 . 10(-4) M was shown to block the responce of the membrane when added to the cell prior to stimulants. At the same time mercury biochloride did not practically affect the membrane resistance after its response to the odorants. The possible ways of increasing the sensitivity of modified membranes to odorants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号