首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

2.
Leaf discs of brinjal, tomato, sugar cane and maize rapidly incorporated [32P]orthophosphate into total phospholipids. Analyses of the labelled lipid extracts by thin-layer chromatography, autoradiography and comparison with inositol phospholipid standards demonstrated the labelling of phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate in addition to other phospholipids. The presence of polyphosphoinositides was further confirmed by deacylation of phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate and separation of the water-soluble products, glycerophosphoinositol phosphate and glycerophosphoinositol bisphosphate by formate exchange chromatography. Incorporation of [32P]orthophosphate into inositol phospholipids was time-dependent, with monoester phosphate groups attaining isotopic equilibrium within 90 min of incubation. After 2 h, incorporation of label into phosphatidylinositol, phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate was about 15, 10 and 3%, respectively, of the total phospholipids. The ratio of radioactivity in phosphatidylinositol/phosphatidylinositol monophosphate/phosphatidylinositol bisphosphate was about 5:5:1 in brinjal leaves. However, this ratio may be an overestimate of the amounts of inositol phospholipids present, as other lysophospholipids may comigrate with standards.  相似文献   

3.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

4.
A method has been developed for the enzymatic preparation of alpha-(32)P-labeled ribo- and deoxyribonucleoside triphosphates, cyclic [(32)P]AMP, and cyclic [(32)P]GMP of high specific radioactivity and in high yield from (32)Pi. The method also enables the preparation of [gamma-(32)P]ATP, [gamma-(32)P]GTP, [gamma-(32)P]ITP, and [gamma-(32)P]-dATP of very high specific activity and in high yield. The preparation of the various [alpha-(32)P]nucleoside triphosphates relies on the phosphorylation of the respective 3'-nucleoside monophosphates with [gamma-(32)P]ATP by polynucleotide kinase and a subsequent nuclease reaction to form [5'-(32)P]nucleoside monophosphates. The [5'-(32)P]nucleoside monophosphates are then converted enzymatically to the respective triphosphates. All of the reactions leading to the formation of [alpha-(32)P]nucleoside triphosphates are carried out in the same reaction vessel, without intermediate purification steps, by the use of sequential reactions with the respective enzymes. Cyclic [(32)P]AMP and cyclic [(32)P]GMP are also prepared enzymatically from [alpha-(32)P]ATP or [alpha-(32)P]GTP by partially purified preparations of adenylate or guanylate cyclases. With the exception of the cyclases, all enzymes used are commerically available. The specific activity of (32)P-labeled ATP made by this method ranged from 200 to 1000 Ci/mmol for [alpha-(32)P]ATP and from 5800 to 6500 Ci/mmol for [gamma-(32)P]ATP. Minor modifications of the method should permit higher specific activities, especially for the [alpha-(32)P]nucleoside triphosphates. Methods for the use of the [alpha-(32)P]nucleoside phosphates are described for the study of adenylate and guanylate cyclases, cyclic AMP- and cyclic GMP phosphodiesterase, cyclic nucleotide binding proteins, and as precursors for the synthesis of other (32)P-labeled compounds of biological interest. Moreover, the [alpha-(32)P]nucleoside triphosphates prepared by this method should be very useful in studies on nucleic acid structure and metabolism and the [gamma-(32)P]nucleoside triphosphates should be useful in the study of phosphate transfer systems.  相似文献   

5.
Our previous study (Tan, A. W. H., and Nuttall, F. Q. (1983) J. Biol. Chem. 258, 9624-9630) indicated that liver synthase D contained a large number of endogenous phosphates, 12 of which were stable and 6 labile to alkali treatment. We wished to investigate the nature of the phosphates on synthase which became isotopically labeled when inorganic [32P]phosphate was given either to intact rats or to isolated liver cells. An antibody against liver synthase D was used for the isolation of synthase. The antibody recognized both the phosphorylated and dephosphorylated form of the enzyme, native as well as partially cleaved species. A large enzyme form, with Mr of 90,000 as well as one with Mr of 73,000 was observed. A 61% decrease in [32P]phosphate was found in synthase when prelabeled liver cells were treated with glucose, whereas a 25% increase was seen in cells treated with glucagon. After [32P]synthase D was converted to synthase I by synthase phosphatase, 95% of the [32P]phosphate was lost. All of the bound [32P]phosphates were found to be labile to alkali. Thus, under the in vivo conditions used, the [32P]phosphates incorporated into synthase were characterized by their fast turnover rate, alkali lability and susceptibility to the action of synthase phosphatase, both in vivo and in vitro. These criteria serve to distinguish them from the slower turning-over, alkali-stable phosphates found previously in both synthases D and I.  相似文献   

6.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

7.
Pyridoxal [32P] phosphate was prepared using [gamma-32P] ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

8.
InEscherichia coli, isocitrate lyase has been shown to be phosphorylated in vitro by [-32P]-ATP on histidine residues. This phosphorylation is believed to be necessary for activity of this enzyme. Previous work has shown that treatment of isocitrate lyase with acid phosphatase leads to a decrease in activity as well as a loss of incorporated [32P]-phosphate in a time-dependent manner. In addition to phosphorylation by [-32P]ATP, isocitrate lyase has been found to incorporate radioactive label from [-32P]ATP and from [14C]ATP. This finding may indicate that more than one type of covalent modification occurs on this enzyme. Isocitrate lyase activity, inE. coli, may be regulated by posttranslational modification in several ways.  相似文献   

9.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

10.
In rat uterine mince incubated in vitro [3H]inositol was found to be incorporated into phosphatidylinositol (PI) predominantly via a pathway which could be markedly and dose dependently activated with Mn2+ (0.1-10 mM) and inhibited by Ca2+ (1-10 mM). These ions had no effect on the incorporation of [32P]phosphate (32P) into PI indicating a distinct inositol-exchange mechanism for the labeling of PI with [3H]inositol. Treatment of ovariectomized rats for 5 days with 2 micrograms estradiol dipropionate (EDP) increased about 3-fold (when measured in the presence of 1 mM Mn2+) and 4-5-fold (when measured in the presence of 1 mM Ca2+) the inositol-exchange activity in the rat uterus, and these effects were suppressed by 40 and 30% respectively by the concomitant administration of 2 mg progesterone (P). EDP alone or in combination with P increased to the same extent (by a factor of 2-3) the rate of labeling with 32P of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and plasmenylethanolamine (PmE). The labeling rate of PI was increased 1.5-1.7-fold by treatment with EDP and this increase was selectively augmented further to about 2.5-fold by the simultaneous administration of P. Treatment with P alone had no significant effect on the incorporation of either labeled precursor. Steroid hormone treatments had no effect on the amount of these phospholipids in 100 mg uterine tissue, but they increased about 1.7-fold the rate of labeling of ATP with 32P. We conclude that P, when administered together with estradiol, regulates differentially the turnover of the inositol and phosphate moieties of PI with possible physiological consequences.  相似文献   

11.
In this study a rho-nitrophenyl phosphate (PNPP) phosphatase was purified 476-fold from bovine brain cytosol. The molecular weight of the enzyme is 84,000 as determined by gel filtration. The PNPP phosphatase could also dephosphorylate [32P-Tyr]-casein and -poly (Glu, Tyr). [32P-ser]-casein and -histone were not substrates. The phosphatase activity was found to be totally dependent on divalent metal ions. Mg2+ was the most effective with Ka of 20 microM. Ca2+ was found to be a potent inhibitor of the phosphatase. Using PNPP as a substrate the IC50 for Ca2+ was 0.6 microM. Several known inhibitors of phosphotyrosyl protein phosphatases such as Zn2+, vanadate, and molybdate also inhibited the PNPP phosphatase. The very high sensitivity for inhibition by Ca2+ suggests that the activity of the phosphotyrosyl protein phosphatase may be regulated by fluctuations in the intracellular concentrations of Ca2+.  相似文献   

12.
1. Paired iris smooth muscles from rabbits were incubated for 30 min at 37 degrees C in an iso-osmotic salt medium containg glucose, inositol, cytidine and [32P]phosphate. 2. One of the pair was then incubated at 37 degrees C for 10 min in unlabelled medium containing 10mM-2-deoxyglucose and the other was incubated in the presence of acetylcholine plus eserine (0.05mM each). 2-Deoxyglucose, which was included in the incubation medium to minimize the biosynthesis of triphosphoinositide from ATP and diphosphoinositide, decreased the amount of labelled ATP by 71% and inhibited further 32P incorporation from ATP into triphosphoinositide by almost 30%. 3. Acetylcholine (0.05mM) increased significantly the loss of 32P from triphosphoinositide (the 'triphosphoinositide effect') in 32P-labelled iris muscle. This effect was measured both chemically and radiochemically. It was also observed when 32Pi was replaced by myo-[3H]inositol in the incubation medium. 4. The triphosphoinositide effect was blocked by atropine but not by D-tubocurarine. Further, muscarinic but not nicotinic agonists were found to provoke this effect. 5. Acetylcholine decreased by 28% the 32P incorporation into triphosphoinositide, presumably by stimulating its breakdown. This decrement in triphosphoinositide was blocked by atropine, but not by D-tubocurarine. 6. The triphosphoinositide effect was accompanied by a significant increase in 32P labelling, but not tissue concentration, of phosphatidylinositol and phosphatidic acid. The possible relationship between the loss of 32P label from triphosphoinositide in response to acetylcholine and the concomitant increase in that of phosphatidylinositol and phosphatidic acid is discussed. 7. The presence of triphosphoinositide phosphomonoesterase, the enzyme that might be stimulated in the iris smooth muscle by the neurotransmitter, was demonstrated, and, under our methods of homogenization and assay, more than 80% of its activity was localized in the particulate fraction.  相似文献   

13.
This method describes a procedure that can be carried out easily to obtain large amounts of [32P]phosphatidylcholine and [32P]lysophosphatidylcholine. The method involves germinating soya beans in the presence of [32P]Pi. The yield was 0.58% for [P]phosphatidylcholine and 0.52% for [32P]lysophosphatidylcholine, and the specific radioactivity of both was 10(7) d.p.m./mumol.  相似文献   

14.
Experiments were carried out to assess the effects of secretagogues on the polyphosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] on preparations of exocrine pancreas in vitro. Carbachol and caerulein provoked a rapid (less than 1 min) breakdown of 15-20% of [32P]PtdIns(4,5)P2 in isolated pancreatic acini, but did not affect [32P]PtdIns4P. In contrast, the Ca2+ ionophore ionomycin had no immediate effect on the levels of either inositide but caused a parallel fall in both lipids after 5-10 min. A similar decrease in [32P]PtdIns(4,5)P2 due to carbachol was obtained with isolated acini and isolated cells, despite the fact that the secretory response of isolated cells was considerably less than that of isolated acini. Loss of [32P]PtdIns(4,5)P2 elicited by carbachol or caerulein was unaffected either by the addition of EGTA in excess of extracellular Ca2+ or when a protocol was employed that eliminated caerulein-induced intracellular Ca2+-release. These results suggest that agonist-induced PtdIns(4,5)P2 breakdown in the exocrine pancreas may be an early step in the stimulus-response coupling pathway and also suggest that this breakdown is not dependent on Ca2+-mobilization.  相似文献   

15.
Incubation of rat liver nuclear envelopes with [gamma-32P]ATP resulted in the synthesis of phosphatidylinositol-[4-32P]phosphate (PIP). Degradation of endogenously labeled PIP was observed upon the dilution of the labeled ATP with an excess of unlabeled ATP. This degradation was most rapid in the presence of EDTA, and was inhibited by MgCl2 and CaCl2. To further characterize the degradative activity, phosphatidylinositol[4-32P]phosphate and phosphatidylinositol [4,5-32P]bisphosphate (PIP2) were synthesized and isolated from erythrocyte plasma membranes. The 32P-labeled phospholipids were then resuspended in 0.4% Tween 80, a detergent that did not inhibit degradation of endogenously labeled PIP, and mixed with nuclear envelopes. [32P]PIP and [32P]PIP2 were degraded at rates of 2.25 and 0.04 nmol min-1 mg nuclear envelope protein-1, respectively. Only 32P was released from phosphatidyl[2-3H]inositol-[4-32P]phosphate, indicating that hydrolysis of PIP was due to a phosphomonoesterase activity (EC 3.1.3.36) in nuclear envelopes. Similarly, anion-exchange chromatographic analysis of the water-soluble products released from [32P]PIP indicated that inorganic phosphate was the sole 32P-labeled product. Hydrolysis of PIP was most rapid at neutral pH, and was not affected by inhibitors of acid phosphatase or alkaline phosphatase. Hydrolysis of PIP was also not inhibited by nonspecific phosphatase substrates, such as glycerophosphate, p-nitrophenylphosphate, AMP, or glucose 6-phosphate. Hydrolysis was stimulated by putrescine, and was inhibited by inositol 2-phosphate, spermidine, spermine, and neomycin.  相似文献   

16.
When isolated human fibroblast lysosomes are incubated with 4 microM [32P]phosphate at pH 7.0, orthophosphate is transported into lysosomes and is rapidly incorporated into low and high molecular weight products. We have characterized the high molecular weight (HMW) lysosomal material into which [32P]phosphate is incorporated and have found it to consist of long chains of inorganic polyphosphate based on the following observations. 1) greater than 97% of HMW 32P-lysosomal material is converted to [32P]orthophosphate when incubated with 1 N HCl for 20 min at 100 degrees C. 2) Incubation of HMW 32P-lysosomal material at pH 7.0 and 65 degrees C for 96 h results in the formation of [32P]trimetaphosphate, which is known to be produced only from linear chains of polyphosphate under these conditions. 3) HMW 32P-lysosomal material is resistant to degradation by proteinase K, ribonuclease, and deoxyribonuclease and extracts into the aqueous phase during phenol/chloroform extractions. 4) HMW 32P-lysosomal material displays heterogeneous mobility on polyacrylamide gels with most chains ranging in length from 100 to at least 600 phosphate residues. 5) HMW 32P-lysosomal material is partially hydrolyzed under alkaline conditions to yield a continuous ladder of polyphosphate species differing by one or several residues in length on polyacrylamide gels.  相似文献   

17.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

18.
The phosphorylation procedure of F. Cramer, W. Rittersdorf, and W. Bohm [(1961) Chem. Ber. 654, 180] using bis(triethylammonium) phosphate and trichloroacetonitrile was shown to be effective in the synthesis of [32P]phosphatidic acid. From diacylglyceride and 0.5 mCi H(3)32PO4, 25-50 microCi of labeled material (sp act = 1 mCi/mumol) can be prepared in 2 h. The product was shown to be radiochemically pure by both TLC and HPLC. L- and DL-[32P]dipalmitoyl phosphatidic acid prepared using this procedure were shown to be hydrolyzed by rat liver microsomes at approximately the same rates.  相似文献   

19.
The uptake of [32P]phosphate by human, gel-filtered blood platelets and its incorporation into cytoplasmic ATP and polyphosphoinositides was studied. In unstimulated platelets, uptake was Na+o-dependent and saturable at approximately 20 nmol/min/10(11) cells with a half-maximal rate at 0.5 mM extracellular phosphate. Upon stimulation with thrombin or collagen, net influx of [32P]Pi was accelerated 5- to 10-fold. With thrombin, [32P]Pi efflux was also increased. After the first 2 min, efflux exceeded influx, resulting in the net release of [32P]Pi from the platelets. Since the stimulus-induced burst in [32P]Pi uptake paralleled the secretory responses, it might be an integral part of stimulus-response coupling in platelets. The stimulus-induced burst in net [32P]Pi uptake led to an enhanced labeling of metabolic ATP, which was already detectable at 5 s after stimulation with thrombin. Concomitantly, the incorporation of [32P]Pi into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was accelerated. The thrombin-induced increase in specific 32P radioactivity of cytoplasmic ATP fully accounted for the simultaneous increase in specific 32P radioactivity of these phosphoinositides. In studying the extent of 32P labeling of phosphorylated compounds in response to a cellular stimulus, it is therefore essential to measure the effect of the stimulus on the specific radioactivity of cytoplasmic ATP.  相似文献   

20.
A [phosphotyrosine]protein phosphatase (PTPPase) was purified almost to homogeneity from rat brain, with [32P]p130gag-fps, an oncogene product of Fujinami sarcoma virus, as substrate. The characteristics of the purified preparation of PTPPase were as follows: the enzyme was a monomer with a molecular mass of 23 kDa; its optimum pH was 5.0-5.5; its activity was not dependent on bivalent cations; its activity was strongly inhibited by sodium vanadate, but was not inhibited by ZnCl2, L(+)-tartrate or NaF; it catalysed the dephosphorylation of [32P]p130gag-fps, [[32P]Tyr]casein, p-nitrophenyl phosphate and L-phosphotyrosine, but did not hydrolyse [[32P]Ser]tubulin, L-phosphoserine, DL-phosphothreonine, 5'-AMP, 2'-AMP or beta-glycerophosphate significantly. During the purification, most of the PTPPase activity was recovered in distinct fractions from those of conventional low-molecular-mass acid phosphatase (APase), which was reported to be a major PTPPase [Chernoff & Li (1985) Arch. Biochem. Biophys. 240, 135-145], from DE-52 DEAE-cellulose column chromatography, and those two enzymes could be completely separated by Sephadex G-75 column chromatography. APase also showed PTPPase activity with [32P]p130gag-fps, but the specific activity was lower than that of PTPPase with molecular mass of 23 kDa, and it was not sensitive to sodium vanadate. These findings suggested that PTPPase (23 kDa) was the major and specific PTPPase in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号