首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Species differ regarding their drought tolerance and individuals of a given species can modify their morphology and physiology in response to drought. However, since evolutionary and ecological selective pressures differ, individual and interspecific responses to drought might not match. We determined summer survival and a number of ecophysiological variables in two factorial experiments with seedlings of eleven tree species present in Mediterranean ecosystems, grown under slowly imposed water stress and control conditions. Plants experiencing drought exhibited reduced growth, low specific leaf area, chlorophyll content, and photosynthetic rate when compared to the controls, and species-specific drought tolerance was associated with an analogous set of trait values. However, while species with high leaf area ratio and shoot-root ratio exhibited greater drought tolerance, drought induced the reversed response within species. Contrary to expectations, water use efficiency was lower in drought-tolerant species and decreased in water-stressed individuals compared to the control plants. There was a distinctive phylogenetic signal in the functional grouping of species, with oaks, pines, and other genera being clearly different from each other in their drought tolerance and in their functional responses to drought. However, all relationships between ecophysiological variables and drought tolerance were significant after accounting for phylogenetic effects, with the exception of the relationship between drought tolerance and photochemical efficiency. Our results show that drought tolerance is not achieved by a single combination of trait values, and that even though evolutionary processes and individual responses tend to render similar results in terms of functional traits associated with drought, they do not necessarily match.  相似文献   

3.
干旱与半干旱地区,水分是限制树木生长的重要影响因子。由于降水稀缺且分配不均,叶片吸收水分是此地区树木吸收和利用小量级降水和凝结水的主要方式。北京山区处于易旱少雨的生态脆弱地带,森林植被经常遭受干旱胁迫,所以对该地区的森林系统而言,叶片直接吸收利用截留的降雨是干旱时期树木获得水分的重要途径。基于野外对比控制试验和室内盆栽模拟试验,选取北京山区的主要造林树种侧柏为研究对象,进行利用天然降雨与模拟降雨试验,研究降雨前后侧柏叶片吸水特征,探究侧柏在干旱环境下如何通过叶片吸水缓解干旱胁迫。结果表明:当侧柏长期处于干旱胁迫状态时,叶片可以利用降雨,从中获益用来缓解树木的干旱胁迫状态;叶片的吸水能力与降雨强度呈正相关关系,与土壤含水率呈负相关关系;重度干旱下侧柏植株在降雨强度为15 mm/h时叶片吸水现象最明显,叶水势变化最大为(1.18±0.17) MPa,叶片含水率变化最大为(8.47±1.00)mg/cm~2;当土壤水率高于20.8%时,基本不发生叶片吸水现象。试验结果说明在干旱地区叶片吸水是树木除根系吸水外的重要水分来源方式,并且对干旱地区有效利用短缺水资源,减轻植物水分亏缺具有重要意义。  相似文献   

4.
干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系   总被引:12,自引:0,他引:12  
李文娆  张岁岐  丁圣彦  山仑 《生态学报》2010,30(19):5140-5150
采用盆栽实验方法研究了紫花苜蓿(品种:陇东和阿尔冈金)根系形态、生物量、蒸腾耗水量等对持续干旱的反应及与水分利用效率(WUE)间的关系,以期揭示紫花苜蓿对干旱胁迫的适应机制。结果表明:干旱胁迫使得紫花苜蓿根系形态特征在年季间、茬次间和品种间发生了显著变化,主要表现为主根伸长生长受到抑制、主根直径变细、侧根和根系总长度伸长生长则被促进、根系表面积和直径≥1mm的侧根数目显著增加、根系生物量下降,这是紫花苜蓿对干旱逆境的适应策略,但这种适应性存在限度。另一方面,干旱胁迫条件下紫花苜蓿草产量和蒸腾耗水量也因生长年限、茬次和品种的不同而呈现不同程度的降低。紫花苜蓿根系形态性状(总根长、根系生物量与根冠比)与植株水分利用效率间具有显著的相关性,其中根重对水分效率的影响是第一位的。WUE在根系形态与冠层水分消耗的协同变化下得到有限提高。对干旱的耐性最终表现为第2年第1年、第1茬和第2茬第3茬、陇东阿尔冈金。  相似文献   

5.
In this review, we will discuss physiological traits of C3 cereals related to water use efficiency (WUE) in Mediterranean environments, from leaf (WUEinstantaneous) to crop level (WUEyield or ‘water productivity’). First, we analyse the WUEinstantaneous and the possible trade‐off between improving this parameter and growth/yield performance. Ways to ameliorate WUE without penalties are discussed. We also analyse in what cases breeding by high or low WUEinstantaneous is a suitable criterion to maintain grain yield under drought (Mediterranean) conditions. This question is approached in the framework of carbon isotope discrimination, (Δ13C), the main indirect parameter used to integrate (at time and space scale) the WUEinstantaneous in C3 plants. A negative correlation between these two parameters has been confirmed by several studies. The relationship between Δ13C and grain yield, however, is more complex, and may differ from one environment to another. In Mediterranean conditions with moderate or no water stress, a positive correlation between Δ13C and grain yield is found in barley and wheat, whereas in ‘stored‐water’ crops (such as in some regions of Australia), lower Δ13C (i.e. higher WUEinstantaneous) is associated with higher grain yield, particularly in more stressful conditions. These apparent inconsistencies and their possible implications for plant breeding are discussed. One physiological trait that has received minor attention in attempts to improve WUEinstantaneous is the role of ear photosynthesis. Ears of barley and durum wheat have a higher WUEinstantaneous than the flag leaf, both in well‐watered and in drought conditions. The underlying causes of the higher WUEinstantaneous of ears are not fully understood, but their refixation capacity (i.e. the capacity to re‐assimilate respired carbon dioxide) could be important. Although the genotypic variability of this trait has not been extensively studied, some data support the idea that variation in refixation capacity may be attributable to genetic factors. At the crop level, decreasing soil evaporation is a crucial factor in efforts to improve the WUEyield in Mediterranean conditions, and fast initial growth of the crop (i.e. early vigour) seems to be relevant. In wheat, modern varieties with dwarfing genes (giberellic acid – insensitive) have higher yields but, concomitantly, they have lower initial growth performance. Recently, semi‐dwarf cultivars (giberellic acid – sensitive) with high grain yield and simultaneously high early vigour were found, opening new avenues to increase WUEyield in wheat. The negative effects of futile water loss by cuticular and nocturnal transpiration are also commented. Finally, we discuss some agronomic practices (in particular, ‘deficit irrigation’ systems) linked to physiological traits that confer higher WUEyield,, in particular, in the cases of Mediterranean regions.  相似文献   

6.
With ongoing global climate change,water scarcity-induced drought stress remains a major threat to agricultural productivity.Plants undergo a series of physiological and morphological changes to cope with drought stress,including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake.Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species.The functional dissection of t...  相似文献   

7.
The aim of this paper is to describe the changes of Mediterranean pasture phytomass and their dependence on succession, slope geomorphology and herbivore consumption. Four neighbouring slopes of similar aspect and steepness, located in a pasture area of Central Spain, were chosen for sampling. The slopes had not been cultivated for 1, 3, 8 and 40 years respectively. On each slope both the upper, erosion zone and the lower, accumulation zone were sampled during the months of plant growth (April to July), phytomass being recorded in plots where herbivore consumption was avoided with protection cages and in unprotected plots.Results from the protected plots show that the upper and lower parts of slopes undergo a different development during succession. The highest values of phytomass reached, tended to decrease during succession in the upper zones, the same being true for production. However in the lower zones both parameters tended to increase in time. The ratio P/B, widely known in ecology to decrease with time, did not seem to behave as a usual index of succession in the studied ecosystem. In the upper zone this ratio tended to decrease but in the lower zone it increased with succession after the first years.Phytomass consumption by herbivores was progressively concentrated during succession in the slope sectors of greater production, mainly in the lower zone, which increased its productivity as the slope-talweg system became functional. The evolution of the ecological structure of a slope should be interpreted not only as a result of the tolerance of species to phsysico-chemical factors. It may also reveal the existence of an important interaction between the pasture and the grazing behaviour of exploiting animals. Multivariate analysis of phytomass records revealed a trend of temporal variation which should be identified with the progress of succession.  相似文献   

8.
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.  相似文献   

9.
日益频发的干旱严重威胁着全球森林生态系统的功能。由于干旱胁迫抑制了土壤养分可利用性,因此植物的养分利用和重吸收效率对 森林生态系统的功能以及生物地球化学循环至关重要。然而,目前对于植物养分利用和重吸收效率在干旱条件下的动态响应规律的理解十分 有限,且在(亚)热带区域尤为明显。因此,本研究主要探讨了在湿热森林中不同植物物种在不同月份遭受干旱胁迫时,其养分利用和重吸收 效率的重要性是否会发生变化以及如何变化。本研究在2016年10月–2019年5月期间,依托一处位于亚热带常绿阔叶林的隔离70%自然穿透 雨的干旱实验平台,采集了木荷(Schima superba)和石栎(Lithocarpus glaber)两个物种在不同月份的鲜叶及凋落叶,用于分析干旱对两种植物叶片氮磷利用和重吸收效率的影响(NUE和PUE,NRE和PRE)。研究结果表明,干旱对氮磷利用和重吸收效率的作用在不同植物物种和月份之间有差异。基于两年的观测结果显示,干旱对木荷的养分利用和重吸收效率无显著影响,却使石栎的NUE、NRE和PRE分别降低了3.4%、 20.2%和7.1%。另外,2017 年夏季发生的自然干旱进一步加剧了干旱对石栎养分重吸收的负作用。在2017年8月,石栎的NUE和PUE在干旱处理下分别降低了17.2%和58.1%,而NRE和PRE分别下降了56.5%和53.8%。此外,石栎的NRE,PRE和NUE对干旱的响应显著依赖于土壤水分条件,即当土壤湿度降至约9 v/v%时,存在一个阈值使干旱处理的效果从无影响转变为负作用。我们的结果表明,在干旱条件下亚热带常绿阔叶林树木的养分利用呈现出了物种特定的阈值响应。  相似文献   

10.
Data on lambs born per ewe put to the ram (LB/EP), lambs born per ewe lambing (LB/EL), milk production through lactation and lactation length up to six lambings of 603 Awassi (A), East-Friesian (EF), A × EF (F1), F1 × F1 (F2), EF × F1 (1/4A), 1/4A × F1 (3/8A1) and 3/8A1 × 3/8A1 (3/8A2) ewes bred in the same flock in the years 1956–1971 were analysed. The data were obtained from 2293 ewe-years, 1993 lambings and 1698 lactations. Genotype, age at lambing and sire within genotype had an (P < 0.05) effect on each trait. Effect of year of birth, genotype by age at lambing interaction and genotype by year of birth interaction were significant (P < 0.05) for milk production but not for lamb production. The effects of litter size on milk yield and lactation length were not significant. Least squares means (LSM) of LB/EP were highest in 3/8A2 (1.48) and lowest in Awassi (0.98). LSMs of LB/EL were highest in EF (1.60), and lowest in Awassi (1.11). The LSMs of milk yield of A, F1, F2 and 3/8A2 were similar, ranging from 223 to 248.1. The milk yield of EF was the lowest: only 161 1. The LSMs for lactation length were similar in all genotypes, about 198 days except for 1/4A and EF which had shorter (P < 0.05) lactations. The Awassi-transmitted effects were positive (P < 0.001) for lactation length and milk yield, and negative (P < 0.001) for LB/EL. Heterosis (P < 0.001) was found for LB/EL, milk yield and lactation length. Recombination effect was not significant for any trait.  相似文献   

11.
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Osmotic adjustment (OA) and cellular compatible solute accumulation are widely recognized to have a role in plant adaptation to dehydration mainly through turgor maintenance and the protection of specific cellular functions by defined solutes. At the same time, there has been an ongoing trickle of skepticism in the literature about the role of OA in supporting crop yield under drought stress. Contrarian reviews argued that OA did not sustain turgor or that it served mainly for plant survival rather than productivity. This critical review examined 26 published studies where OA was compared with yield under drought stress in variable genotypes of 12 crops, namely, barley, wheat, maize, sorghum, chickpea, pea, pigeon pea, soybean, canola, mustard, castor bean and sunflower. Over all crops a positive and significant association between OA and yield under drought stress were found in 24 out of 26 cases. Considering that it is generally difficult to find a singular plant trait responsible for yield advantage of numerous crops under different drought stress conditions, this evidence is no less than remarkable as proof that OA sustains crop yield under drought stress.  相似文献   

13.
14.
The efficient use of water supplies requires a systems approach that encompasses all aspects of making water available and its use within society that must recognise global issues. Increasing the efficiency of water use within agricultural systems is an essential priority in many regions including the Mediterranean. This review examines the research priorities, the prospects for crop and soil management and plant breeding and biotechnology that are needed to achieve high stable yield under drought in the Mediterranean. Research must combine the latest genomics resources including quantitative genetics, genomics and biomathematics with an ecophysiological understanding of the interactions between crop plant genotypes and the growing environment to better inform crop improvement.  相似文献   

15.
Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems‐level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn‐ and soybean‐based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems.  相似文献   

16.
BACKGROUND AND AIMS: Climate projections predict drier and warmer conditions in the Mediterranean basin in the next decades. The possibility of such climatic changes modifying the growth of two Mediterranean species, Erica multiflora and Globularia alypum, which are common components of Mediterranean shrublands, was assessed. METHODS: A field experiment was performed from March 1999 to March 2002 to prolong the drought period and to increase the night-time temperature in a Mediterranean shrubland, where E. multiflora and G. alypum are the dominant species. Annual growth in stem diameter and length of both species was measured and annual stem biomass production was estimated for 1999, 2000 and 2001. Plant seasonal growth was also assessed. KEY RESULTS: On average, drought treatment reduced soil moisture 22 %, and warming increased temperature by 0.7-1.6 degrees C. Erica multiflora plants in the drought treatment showed a 46 % lower annual stem elongation than controls. The decrease in water availability also reduced by 31 % the annual stem diameter increment and by 43 % the annual stem elongation of G. alypum plants. New shoot growth of G. alypum was also strongly reduced. Allometrically estimated biomass production was decreased by drought in both species. Warming treatment produced contrasting effects on the growth patterns of these species. Warmer conditions increased, on average, the stem basal diameter growth of E. multiflora plants by 35 %, raising also their estimated stem biomass production. On the contrary, plants of G. alypum in the warming treatment showed a 14 % lower annual stem growth in basal diameter and shorter new shoots in spring compared with controls. CONCLUSIONS: The results indicate changes in the annual productivity of these Mediterranean shrubs under near future drier and warmer conditions. They also point to alterations in their competitive abilities, which could lead to changes in the species composition of these ecosystems in the long term.  相似文献   

17.
Improving water use in crop production   总被引:2,自引:0,他引:2  
Globally, agriculture accounts for 80-90% of all freshwater used by humans, and most of that is in crop production. In many areas, this water use is unsustainable; water supplies are also under pressure from other users and are being affected by climate change. Much effort is being made to reduce water use by crops and produce 'more crop per drop'. This paper examines water use by crops, taking particularly a physiological viewpoint, examining the underlying relationships between carbon uptake, growth and water loss. Key examples of recent progress in both assessing and improving crop water productivity are described. It is clear that improvements in both agronomic and physiological understanding have led to recent increases in water productivity in some crops. We believe that there is substantial potential for further improvements owing to the progress in understanding the physiological responses of plants to water supply, and there is considerable promise within the latest molecular genetic approaches, if linked to the appropriate environmental physiology. We conclude that the interactions between plant and environment require a team approach looking across the disciplines from genes to plants to crops in their particular environments to deliver improved water productivity and contribute to sustainability.  相似文献   

18.
Conservation tillage (CT) can be beneficial for soil, water and soil organic matter conservation in Mediterranean areas that are prone to soil erosion and where water availability for crops is the main factor for sustainability. CT is the best option to protect the soil from erosion, improve infiltration, reduce soil evaporation and so conserve rainwater to increase crop water use (WU) and also water use efficiency (WUE). While CT can play an important role in reaching the stability and sustainability of these agricultural systems, performance depends upon the choice and adoption of an appropriate soil management (tillage) system. In rainfed areas of the Ebro Valley, winter cereals are the main crop sown. This paper presents the results of 15 years of research in different soil and climatic conditions of the area of CT on water conservation, WU and WUE. Long‐term experiments, comparing different tillage systems, were established in 1987, 1990 and 1992, at three locations in the Ebro Valley, chosen according to their degree of aridity (Selvanera, Agramunt and El Canós). Results reveal that CT was most effective in increasing yield under the driest conditions at Agramunt (10–15%), still effective with a smaller advantage under slightly wetter conditions at El Canós (5–10%) but ineffective at Selvanera, the wettest site. CT only increased WU in some years at Agramunt and never at the other two sites. The benefits of CT to both increased yield at Agramunt and El Canós were determined by improved WUE arising from changes in the pattern of WU before and after anthesis.  相似文献   

19.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

20.
为了探讨外源水杨酸(SA)提高植物抗旱性的相关机制,研究了干旱胁迫下(基质含水量为饱和持水量的60%和50%),根际施用外源SA对黄瓜幼苗生长、膜脂过氧化、脯氨酸积累、水分利用效率、净光合速率(Pn)和叶绿素荧光参数的影响.结果表明:SA处理能够缓解干旱胁迫对黄瓜幼苗生长、Pn和水分利用效率的抑制,减小膜脂过氧化程度,促进脯氨酸的积累;添加外源SA显著减小了干旱胁迫下黄瓜幼苗的PSⅡ最大光化学效率、PSⅡ实际光化学效率、PSⅡ潜在活性、PSⅡ有效光化学效率和光化学猝灭系数的下降幅度,抑制了非光化学猝灭系数的升高.添加外源SA可以缓解干旱胁迫造成的膜脂过氧化对膜系统的氧化损伤,并通过增强PSⅡ反应中心活性提高了Pn,有助于水分的利用,同时增大渗透调节能力,减少水分的散失,提高水分利用效率,从而增强植株对干旱的适应能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号