首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have reported that the cell-binding region of the neural cell adhesion molecule (N-CAM) resides in a 65,000-D amino-terminal fragment designated Frl (Cunningham, B. A., S. Hoffman, U. Rutishauser, J. J. Hemperly, and G. M. Edelman, 1983, Proc. Natl. Acad. Sci. USA, 80:3116-3120). We have reported the presence of two functional domains in N-CAM, each identified by a specific mAb, that are required for cell-cell or cell-substratum adhesion (Cole, G. J., and L. Glaser, 1986, J. Cell Biol., 102:403-412). One of these domains is a heparin (heparan sulfate)-binding domain. In the present study we have determined the topographic localization of the heparin-binding fragment from N-CAM, which has been identified by our laboratory. The B1A3 mAb recognizes a 25,000-D heparin-binding fragment derived from chicken N-CAM, and also binds to a 65,000-D fragment, presumably Frl, produced by digestion of N-CAM with Staphylococcus aureus V8 protease. Amino-terminal sequence analysis of the isolated 25,000-D heparin-binding domain of N-CAM yielded the sequence: Leu-Gln-Val-Asp-Ile-Val-Pro-Ser-Gln-Gly. This sequence is identical to the previously reported amino-terminal sequence for murine and bovine N-CAM. Thus, the 25,000-D polypeptide fragment is the amino-terminal region of the N-CAM molecule. We have also shown that the B1A3 mAb recognizes not only chicken N-CAM but also rat and mouse N-CAM, indicating that the heparin-binding domain of N-CAM is evolutionarily conserved among different N-CAM forms. Additional peptide-mapping studies indicate that the second cell-binding site of N-CAM is located in a polypeptide region at least 65,000 D from the amino-terminal region. We conclude that the adhesion domains on N-CAM identified by these antibodies are physically distinct, and that the previously identified cell-binding domain on Frl is the heparin-binding domain.  相似文献   

2.
3.
We have shown previously that the predominant N-CAM isoform in skeletal muscle myotubes contains as a result of alternative splicing a novel domain (MSD1) in its extracellular region. Here we show that this region represents a site for O-linked carbohydrate attachment. The lipid tailed N-CAM in myotubes was found to bind peanut lectin while the transmembrane isoform from myoblasts lacking MSD1 did not. In addition, N-CAM from a variety of neural sources failed to bind the lectin. Analysis of 3T3 fibroblasts transfected with various N-CAM cDNAs, showed that peanut lectin binding was correlated specifically with the expression of the MSD1 region. The oligosaccharides isolated from a purified preparation of myotube N-CAM were shown to contain an O-linked oligosaccharide whose core structure was a sialylated version of Gal beta 1----3GalNac which is the structure recognized specifically by peanut lectin. These data provide the first evidence for the expression of O-linked carbohydrate on any N-CAM isoform and more specifically target this oligosaccharide to the MSD1 region of myotube N-CAM.  相似文献   

4.
On neural cells, the cell adhesion molecule L1 is generally found coexpressed with N-CAM. The two molecules have been suggested, but not directly shown, to affect each other's function. To investigate the possible functional relationship between the two molecules, we have characterized the adhesive interactions between the purified molecules and between cultured cells expressing them. Latex beads were coated with purified L1 and found to aggregate slowly. N-CAM-coated beads did not aggregate, but did so after addition of heparin. Beads coated with both L1 and N-CAM aggregated better than L1-coated beads. Strongest aggregation was achieved when L1-coated beads were incubated together with beads carrying both L1 and N-CAM. In a binding assay, the complex of L1 and N-CAM bound strongly to immobilized L1, but not to the cell adhesion molecules J1 or myelin-associated glycoprotein. N-CAM alone did not bind to these glycoproteins. Cerebellar neurones adhered to and sent out processes on L1 immobilized on nitrocellulose. N-CAM was less effective as substrate. Neurones interacted most efficiently with the immobilized complex of L1 and N-CAM. They adhered to this complex even when its concentration was at least 10 times lower than the lowest concentration of L1 found to promote adhesion. The complex became adhesive for cells only when the two glycoproteins were preincubated together for approximately 30 min before their immobilization on nitrocellulose. The adhesive properties between cells that express L1 only or both L1 and N-CAM were also studied. ESb-MP cells, which are L1-positive, but N-CAM negative, aggregated slowly under low Ca2+. Their aggregation could be completely inhibited by antibodies to L1 and enhanced by addition of soluble N-CAM to the cells before aggregation. N2A cells, which are L1 and N-CAM positive aggregated well under low Ca2+. Their aggregation was partially inhibited by either L1 or N-CAM antibodies and almost completely by the combination of both antibodies. N2A and ESb-MP cells coaggregated rapidly and their interaction was similarly inhibited by L1 and N-CAM antibodies. These results indicate that L1 is involved in two types of binding mechanisms. In one type, L1 serves as its own receptor with slow binding kinetics. In the other, L1 is modulated in the presence of N-CAM on one cell (cis-binding) to form a more potent receptor complex for L1 on another cell (trans-binding).  相似文献   

5.
Neural cell adhesion molecule (N-CAM) mediates homophilic adhesion between cells and heterophilic adhesion between cells and extracellular matrix in a Ca2+-independent manner. N-CAM is widely expressed during development and plays a crucial role in cell division, migration, and differentiation, but its expression is restricted in adults. The distribution of N-CAM immunoreactivity in adult rat tissues was investigated in the present study. N-CAM immunoreactivity was present in the nervous system in the molecular layer of the cerebellum, ependymal cells surrounding the central canal, axons of the white matter, and in Lamina X of the gray matter of the spinal cord. N-CAM immunoreactivity also was found in autonomic nerves. In the digestive system, N-CAM immunoreactivity was found in the stratified squamous epithelium and nerve plexus of the esophagus, glandular cells of the stomach and pylorus, lamina propria, and epithelium of the villi of the duodenum, jejunum, and ileum. N-CAM immunoreactivity was demonstrated in the secretory cells of the adenohypophysis, islets of Langerhans, and acinar cells of the exocrine pancreas. Alveolar cells of the lung were also N-CAM immunoreactive. In the urinary system, N-CAM immunoreactivity was seen in the proximal convoluted tubules of the kidney. In the male reproductive system, N-CAM immunoreactivity was demonstrated in the nerve plexus around the urethral epithelium and in the nerve fibers around the smooth muscle cells of the corpus cavernosum penis. In the visual system, N-CAM immunoreactivity was seen in the epithelial cells of the corpus ciliaris. Cornea and lens epithelium also showed positive immunoreactivity. Our results suggest that cells in many tissues and organs of the adult rat synthesize N-CAM.  相似文献   

6.
7.
《The Journal of cell biology》1985,101(5):1921-1929
The rodent neural cell adhesion molecule (N-CAM) consists of three glycoprotein chains of 180, 140, and 120 kD in their adult forms. Although the proportions of the three components are known to change during development and differ between brain regions, their individual distribution and function are unknown. Here we report studies carried out with a monoclonal antibody that specifically recognizes the 180-kD component of mouse N-CAM (N-CAM180) in its highly sialylated embryonic and less glycosylated adult forms. In primary cerebellar cell cultures, N-CAM180 antibody reacts intracellularly with all types of neural cells including astrocytes, oligodendrocytes, and neurons. During cerebellar, telencephalic, and retinal development N-CAM180 is detectable by indirect immunohistology in differentiated neural cells, but, in contrast to total N-CAM, not in their proliferating precursors in the ventricular zone and primordial and early postnatal external granular layer. In monolayer cultures of C1300 neuroblastoma cells, N-CAM180 appears by immunofluorescence more concentrated at contact points between adjacent cells, while N-CAM comprising the 180- and 140-kD component shows a more uniform distribution at the plasma membrane. Treatment of neuroblastoma cells with dimethylsulfoxide, which promotes differentiation, induces a shift toward the predominant expression of N- CAM180. These observations support the notion that N-CAM180 is expressed selectively in more differentiated neural cells and suggest a differential role of N-CAM180 in the stabilization of cell contacts.  相似文献   

8.
The transmembrane orientation of the polypeptide chains present in preparations of adult and neonatal mouse N-CAM was studied using, as a model system, liposome-inserted purified N-CAM preparations. N-CAM purified from adult or neonatal mouse brain was 125I-labeled and reconstituted into artificial lipid vesicles. After trypsin digestion, the peptides that remained associated with the liposomes were isolated by floatation of the vesicles on sucrose gradients. In control experiments the liposomes were lysed before trypsin treatment. Large, overlapping peptides were obtained after this treatment, several of which were protected by the liposome membrane. Sialic-acid-bearing peptides were revealed by their sensitivity to neuraminidase. To distinguish between peptides corresponding to intracellular or extracellular domains use was made of the P61 and H28.123 monoclonal antibodies, which recognize determinants located on the cytoplasmic and the extracellular part of the molecules respectively. There was no indication that the N-CAM chains were inserted in an inside-out configuration. Peptides protected from trypsin attack by the liposomes and recognized only by P61 had Mr values of 92 000, 42 000 and 35 000. The H28.123 determinant could be mapped to a 32 000-Mr peptide located close to the membrane at the vesicle's exterior. The bulk of the sialic acid seemed to be carried by a rather short sequence distal to the H28.123-reactive peptide but at some distance from the N terminus. Fragments of very similar Mr were generated from young and adult material. However, a 45 000-Mr peptide from neonatal N-CAM appeared to migrate in the higher-Mr region of sodium dodecyl sulfate/polyacrylamide gels in its fully sialylated form. It is concluded that (a) identical polypeptide chains are present in young and adult preparation, (b) the 180 000-Mr, 140 000-Mr and 120 000-Mr chains differ by the length of their cytoplasmic extensions and (c) the largest cytoplasmic sequences have a Mr close to 90 000. A tentative linear model of the transmembrane topography of the N-CAM polypeptides is presented.  相似文献   

9.
G J Cole  R Akeson 《Neuron》1989,2(2):1157-1165
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat N-CAM, to identify the region of N-CAM that binds heparan sulfate. The 28 amino acid HBD-1 synthetic peptide was shown to bind both [3H]heparin and dissociated retinal cells. Retinal cells also attach to a substratum of HBD-2 peptide, but fail to bind to a control peptide containing a scrambled amino acid sequence of HBD-2. The HBD-2 peptide also inhibits retinal cell adhesion to N-CAM, demonstrating the physiological importance of the amino acid sequence encoded by the HBD peptide. These data therefore permit the localization of a heparin binding domain to a 17 amino acid region of immunoglobulin-like loop 2.  相似文献   

10.
mAb-based approaches were used to identify cell surface components involved in the development and function of the frog olfactory system. We describe here a 205-kD cell surface glycoprotein on olfactory receptor neurons that was detected with three mAbs: 9-OE, 5-OE, and 13-OE. mAb 9-OE immunoreactivity, unlike mAbs 5-OE and 13-OE, was restricted to only the axons and terminations of the primary sensory olfactory neurons in the frog nervous system. The 9-OE polypeptide(s) were immunoprecipitated and tested for cross-reactivity with known neural cell surface components including HNK-1, the cell adhesion molecule L1, and the neural cell adhesion molecule (N-CAM). These experiments revealed that 9-OE-reactive molecules were not L1 related but were a subset of the 200-kD isoforms of N-CAM. mAb 9-OE recognized epitopes associated with N-linked carbohydrate residues that were distinct from the polysialic acid chains present on the embryonic form of N-CAM. Moreover, 9-OE N-CAM was a heterogeneous population consisting of subsets both with and without the HNK-1 epitope. Thus, combined immunohistochemical and immunoprecipitation experiments have revealed a new glycosylated form of N-CAM unique to the olfactory system. The restricted spatial expression pattern of this N-CAM glycoform suggests a possible role in the unusual regenerative properties of this sensory system.  相似文献   

11.
12.
Adhesive interactions between neurons and extracellular matrix (ECM) play a key role in neuronal pattern formation. The prominent role played by the extracellular matrix protein tenascin/cytotactin in the development of the nervous system, tied to its abundance, led us to speculate that brain may contain yet unidentified tenascin receptors. Here we show that the neuronal cell adhesion molecule contactin/F11, a member of the immunoglobulin(Ig)-superfamily, is a cell surface ligand for tenascin in the nervous system. Through affinity chromatography of membrane glycoproteins from chick brain on tenascin-Sepharose, we isolated a major cell surface ligand of 135 kD which we identified as contactin/F11 by NH2-terminal sequencing. The binding specificity between contactin/F11 and tenascin was demonstrated in solid-phase assays. Binding of immunopurified 125I-labeled contactin/F11 to immobilized tenascin is completely inhibited by the addition of soluble tenascin or contactin/F11, but not by fibronectin. When the fractionated isoforms of tenascin were used as substrates, contactin/F11 bound preferentially to the 190-kD isoform. This isoform differs in having no alternatively spliced fibronectin type III domains. Our results imply that the introduction of these additional domains in some way disrupts the contactin/F11 binding site on tenascin. To localize the binding site on contactin/F11, proteolytic fragments were generated and characterized by NH2-terminal sequencing. The smallest contactin/F11 fragment which binds tenascin is 45 kD and also begins with the contactin/F11 NH2-terminal sequence. This implies that contactin/F11 binds to tenascin through a site within the first three Ig-domains.  相似文献   

13.
The mechanism by which the neural cell adhesion molecule, N-CAM, mediates homophilic interactions between cells has been variously attributed to an isologous interaction of the third immunoglobulin (Ig) domain, to reciprocal binding of the two N-terminal Ig domains, or to reciprocal interactions of all five Ig domains. Here, we have used a panel of recombinant proteins in a bead binding assay, as well as transfected and primary cells, to clarify the molecular mechanism of N-CAM homophilic binding. The entire extracellular region of N-CAM mediated bead aggregation in a concentration- and temperature-dependent manner. Interactions of the N-terminal Ig domains, Ig1 and Ig2, were essential for bead binding, based on deletion and mutation experiments and on antibody inhibition studies. These findings were largely in accord with aggregation experiments using transfected L cells or primary chick brain cells. Additionally, maximal binding was dependent on the integrity of the intramolecular domain-domain interactions throughout the extracellular region. We propose that these interactions maintain the relative orientation of each domain in an optimal configuration for binding. Our results suggest that the role of Ig3 in homophilic binding is largely structural. Several Ig3-specific reagents failed to affect N-CAM binding on beads or on cells, while an inhibitory effect of an Ig3-specific monoclonal antibody is probably due to perturbations at the Ig2-Ig3 boundary. Thus, it appears that reciprocal interactions between Ig1 and Ig2 are necessary and sufficient for N-CAM homophilic binding, but that maximal binding requires the quaternary structure of the extracellular region defined by intramolecular domain-domain interactions.  相似文献   

14.
Neural cell adhesion molecule (N-CAM) is distributed in most nerve cells and some non-neural tissues. The present immunohistochemical study has revealed, for the first time, the expression of N-CAM in perisinusoidal stellate cells of the human liver. Liver specimens were stained with monoclonal antibody against human Leu19 (N-CAM) by a streptoavidin-biotin-peroxidase-complex method. Light- and electron-microscopic analyses have shown that N-CAM-positive nerve fibers are distributed in the periportal and intermediate zones of the liver lobule. Perisinusoidal stellate cells in these zones are also positive for N-CAM. N-CAM is expressed on the surface of the cell, including cytoplasmic projections. Close contact of N-CAM-positive nerve endings with N-CAM-positive stellate cells has been observed. On the other hand, stellate cells in the centrilobular zone exhibit weak or no reaction for N-CAM. Perivascular smooth muscle cells and fibroblasts in the portal area and myofibroblasts around the central veins are negative for N-CAM. The present results indicate that the perisinusoidal stellate cells in the periportal and intermediate zones of the liver lobule characteristically express N-CAM, unlike other related mesenchymal cells, and suggest that the intralobular heterogeneity of N-CAM expression by stellate cells is related to the different maturational stages of these cells.  相似文献   

15.
Activation of the fibroblast growth factor receptor (FGFR) by neural cell adhesion molecule (NCAM) is essential for NCAM-mediated neurite outgrowth. Previous peptide studies have identified two regions in the fibronectin type 3 (FN3)-like domains of NCAM as being important for these activities. Here we report the crystal structure of the NCAM FN3 domain tandem, which reveals an acutely bent domain arrangement. Mutation of a non-conserved surface residue (M610R) led to a second crystal form showing a substantially different conformation. Thus, the FN3 domain linker is highly flexible, suggesting that it corresponds to the hinge seen in electron micrographs of NCAM. The two putative FGFR1-binding segments, one in each NCAM FN3 domain, are situated close to the domain interface. They form a contiguous patch in the more severely bent conformation but become separated upon straightening of the FN3 tandem, suggesting that conformational changes within NCAM may modulate FGFR1 activation. Surface plasmon resonance experiments demonstrated only a very weak interaction between the NCAM FN3 tandem and soluble FGFR1 proteins expressed in mammalian cells (dissociation constant > 100 μM). Thus, the NCAM-FGFR1 interaction at the cell surface is likely to depend upon avidity effects due to receptor clustering.  相似文献   

16.
We have studied alpha 2,8-linked polysialic acid (polySia) and the neural cell adhesion molecule (N-CAM) in the adult rat brain by immunohistochemistry and Western blot analysis. Both molecules were widely distributed but not ubiquitous. Various brain regions showed colocalization of polySia and N-CAM. Strong immunoreactivity for polySia was seen in regions which were negative for N-CAM, such as the main and accessory olfactory bulbs. Immunohistochemical evidence for the heterogeneity of polySia expression in different brain regions was confirmed by immunoblotting. We present evidence that N-CAM is not the only polySia bearing protein in adult rat brain. Specifically, immunoprecipitation using the polySia-specific monoclonal antibody mAb 735 precipitated not only N-CAM isoforms carrying polySia, but also the sodium channel alpha subunit. Immunoblotting using sodium channel alpha subunit antibody (SP20) revealed a smear from 250 kDa upwards. PolySia removal using an endoneuraminidase specific for alpha 2,8-linked polysialic acid of 8 or more residues long, reduced this smear to a single band at 250 kDa. Thus both N-CAM and sodium channels carry homopolymers of alpha 2,8-linked polysialic acid in adult rat brain.  相似文献   

17.
Subsequent to our identification of the novel immunoglobulin-like cell adhesion molecule hepaCAM, we demonstrated that hepaCAM is capable of modulating cell growth and cell–extracellular matrix interactions. In this study, we examined the localization of hepaCAM in lipid rafts/caveolae as well as the interaction of hepaCAM with the caveolar structural protein caveolin-1 (Cav-1). Our results revealed that a portion of hepaCAM resided in detergent-resistant membranes and co-partitioned with Cav-1 to low buoyant density fractions characteristic of lipid rafts/caveolae. In addition, co-localization and coimmunoprecipitation assays confirmed the association of hepaCAM with Cav-1. Deletion analysis of hepaCAM showed that the extracellular first immunoglobulin domain of hepaCAM was required for binding Cav-1. Furthermore, when co-expressed, Cav-1 induced the expression of hepaCAM as well as distributed hepaCAM to intracellular Cav-1-positive caveolar structures. Taken together, our findings indicate that hepaCAM is partially localized in the lipid rafts/caveolae and interacts with Cav-1 through its first immunoglobulin domain.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号