首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we introduce a probabilistic measure for computing the similarity between two biological sequences without alignment. The computation of the similarity measure is based on the Kullback-Leibler divergence of two constructed Markov models. We firstly validate the method on clustering nine chromosomes from three species. Secondly, we give the result of similarity search based on our new method. We lastly apply the measure to the construction of phylogenetic tree of 48 HEV genome sequences. Our results indicate that the weighted relative entropy is an efficient and powerful alignment-free measure for the analysis of sequences in the genomic scale.  相似文献   

2.
3.
艾亮  冯杰 《生物信息学》2023,21(3):179-186
本文提出了一种新的快速非比对的蛋白质序列相似性与进化分析方法。在刻画蛋白质序列特征时,首先将氨基酸的10种理化性质通过主成分分析浓缩为6个主成分,并且将每条蛋白质序列里的氨基酸数目作为权重对主成分得分值进行加权平均,然后再融合氨基酸的位置信息构成一个26维的蛋白质序列特征向量,最后利用欧式距离度量蛋白质序列间的相似性及进化关系。通过对3个蛋白质序列数据集的测试表明,本文提出的方法能将每条蛋白质序列准确聚类,并且简便快捷,说明了该方法的有效性。  相似文献   

4.

Background

DNA Clustering is an important technology to automatically find the inherent relationships on a large scale of DNA sequences. But the DNA clustering quality can still be improved greatly. The DNA sequences similarity metric is one of the key points of clustering. The alignment-free methodology is a very popular way to calculate DNA sequence similarity. It normally converts a sequence into a feature space based on words’ probability distribution rather than directly matches strings. Existing alignment-free models, e.g. k-tuple, merely employ word frequency information and ignore many types of useful information contained in the DNA sequence, such as classifications of nucleotide bases, position and the like. It is believed that the better data mining results can be achieved with compounded information. Therefore, we present a new alignment-free model that employs compounded information to improve the DNA clustering quality.

Results

This paper proposes a Category-Position-Frequency (CPF) model, which utilizes the word frequency, position and classification information of nucleotide bases from DNA sequences. The CPF model converts a DNA sequence into three sequences according to the categories of nucleotide bases, and then yields a 12-dimension feature vector. The feature values are computed by an entropy based model that takes both local word frequency and position information into account. We conduct DNA clustering experiments on several datasets and compare with some mainstream alignment-free models for evaluation, including k-tuple, DMk, TSM, AMI and CV. The experiments show that CPF model is superior to other models in terms of the clustering results and optimal settings.

Conclusions

The following conclusions can be drawn from the experiments. (1) The hybrid information model is better than the model based on word frequency only. (2) For DNA sequences no more than 5000 characters, the preferred size of sliding windows for CPF is two which provides a great advantage to promote system performance. (3) The CPF model is able to obtain an efficient stable performance and broad generalization.  相似文献   

5.
基于DNA序列K-tuple分布的一种非序列比对分析   总被引:1,自引:0,他引:1  
沈娟  吴文武  解小莉  郭满才  袁志发 《遗传》2010,32(6):606-612
文章在基因组K-tuple分布的基础上, 给出了一种推测生物序列差异大小的非序列比对方法。该方法可用于衡量真实DNA序列和随机重排序列在K-tuple分布上的差异。将此方法用于构建含有26种胎盘哺乳动物线粒体全基因组的系统树时, 随着K的增大, 系统树的分类效果与生物学一致公认的结果愈加匹配。结果表明, 用此方法构建的系统进化树比用其他非序列比对分析方法构建的更加合理。  相似文献   

6.
Yu C  Cheng SY  He RL  Yau SS 《Gene》2011,486(1-2):110-118
In this paper, we propose a new protein map which incorporates with various properties of amino acids. As a powerful tool for protein classification, this new protein map both considers phylogenetic factors arising from amino acid mutations and provides computational efficiency for the huge amount of data. The ten amino acid physico-chemical properties (the chemical composition of the side chain, two polarity measures, hydropathy, isoelectric point, volume, aromaticity, aliphaticity, hydrogenation, and hydroxythiolation) are utilized according to their relative importance. Moreover, during the course of calculation of genetic distances between pairs of proteins, this approach does not require any alignment of sequences. Therefore, the proposed model is easier and quicker in handling protein sequences than multiple alignment methods, and gives protein classification greater evolutionary significance at the amino acid sequence level.  相似文献   

7.
Subword composition plays an important role in a lot of analyses of sequences. Here we define and study the "local decoding of order N of sequences," an alternative that avoids some drawbacks of "subwords of length N" approaches while keeping informations about environments of length N in the sequences ("decoding" is taken here in the sense of hidden Markov modeling, i.e., associating some state to all positions of the sequence). We present an algorithm for computing the local decoding of order N of a given set of sequences. Its complexity is linear in the total length of the set (whatever the order N) both in time and memory space. In order to show a use of local decoding, we propose a very basic dissimilarity measure between sequences which can be computed both from local decoding of order N and composition in subwords of length N. The accuracies of these two dissimilarities are evaluated, over several datasets, by computing their linear correlations with a reference alignment-based distance. These accuracies are also compared to the one obtained from another recent alignment-free comparison.  相似文献   

8.
Sequence comparison is one of the major tasks in bioinformatics, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations. There are several similarity/dissimilarity measures for sequence comparison, but challenges remains. This paper presented a binomial model-based measure to analyze biological sequences. With help of a random indicator, the occurrence of a word at any position of sequence can be regarded as a random Bernoulli variable, and the distribution of a sum of the word occurrence is well known to be a binomial one. By using a recursive formula, we computed the binomial probability of the word count and proposed a binomial model-based measure based on the relative entropy. The proposed measure was tested by extensive experiments including classification of HEV genotypes and phylogenetic analysis, and further compared with alignment-based and alignment-free measures. The results demonstrate that the proposed measure based on binomial model is more efficient.  相似文献   

9.
Probabilistic approaches for sequence alignment are usually based on pair Hidden Markov Models (HMMs) or Stochastic Context Free Grammars (SCFGs). Recent studies have shown a significant correlation between the content of short indels and their flanking regions, which by definition cannot be modelled by the above two approaches. In this work, we present a context-sensitive indel model based on a pair Tree-Adjoining Grammar (TAG), along with accompanying algorithms for efficient alignment and parameter estimation. The increased precision and statistical power of this model is shown on simulated and real genomic data. As the cost of sequencing plummets, the usefulness of comparative analysis is becoming limited by alignment accuracy rather than data availability. Our results will therefore have an impact on any type of downstream comparative genomics analyses that rely on alignments. Fine-grained studies of small functional regions or disease markers, for example, could be significantly improved by our method. The implementation is available at www.mcb.mcgill.ca/~blanchem/software.html.  相似文献   

10.
11.
Current efforts to build Sustainable Development Measurements have stumbled with problems of arbitrary structure, valuation,artificial ignorance suppression, and democratic illegitimacy. This paper proposes a new method to track and compare the Sustainable Development (SD) of countries, building an Interval of Sustainable Development (ISD). The ISD is capable of overcoming these problems by reporting all possible structures instead of only one, by relying on a variety of existing economic, social, and environmental variables, by embodying confidence levels in the measurement itself, and by facilitating democratic deliberation. By doing this, the ISD is capable of showing, subject to a confidence level, how a country is performing with respect to SD. This paper also applies this method specifying parameters and using available data for 180 countries during 1990–2011. During this 22-year period, results for a selection of countries are presented to illustrate the advantages and limitations of this proposal.  相似文献   

12.
A new sequence distance measure for phylogenetic tree construction   总被引:5,自引:0,他引:5  
MOTIVATION: Most existing approaches for phylogenetic inference use multiple alignment of sequences and assume some sort of an evolutionary model. The multiple alignment strategy does not work for all types of data, e.g. whole genome phylogeny, and the evolutionary models may not always be correct. We propose a new sequence distance measure based on the relative information between the sequences using Lempel-Ziv complexity. The distance matrix thus obtained can be used to construct phylogenetic trees. RESULTS: The proposed approach does not require sequence alignment and is totally automatic. The algorithm has successfully constructed consistent phylogenies for real and simulated data sets. AVAILABILITY: Available on request from the authors.  相似文献   

13.
Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids.  相似文献   

14.
The Smith-Waterman (SW) algorithm is a typical technique for local sequence alignment in computational biology. However, the SW algorithm does not consider the local behaviours of the amino acids, which may result in loss of some useful information. Inspired by the success of Markov Edit Distance (MED) method, this paper therefore proposes a novel Markov pairwise protein sequence alignment (MPPSA) method that takes the local context dependencies into consideration. The numerical results have shown its superiority to the SW for pairwise protein sequence comparison.  相似文献   

15.
A simple method of sequence comparison, based on a correlation analysis of oligonucleotide frequency distributions, is here shown to be a reliable test of overall sequence similarity. The method does not involve sequence alignment procedures and permits the rapid screening of large amounts of sequence data. It identifies those sequences which deserve more careful analysis of sequence similarity at the level of resolution of the single nucleotide. It uses observed quantities only and does not involve the adoption of any theoretical model.  相似文献   

16.
This article presents a new method for the comparison of multiple macromolecular sequences. It is based on a hierarchical sequence synthesis procedure that does not require anya priori knowledge of the molecular structure of the sequences or the phylogenetic relations among the sequences. It differs from the existing methods as it has the capability of: (i) generating a statistical-structural model of the sequences through a synthesis process that detects homologous groups of the sequences, and (ii) aligning the sequences while the taxonomic tree of the sequences is being constructed in one single phase. It produces superior results when compared with some existing methods.  相似文献   

17.
18.
We have written two programs for searching biological sequencedatabases that run on Intel hypercube computers. PSCANLJB comparesa single sequence against a sequence library, and PCOMPLIB comparesall the entries in one sequence library against a second library.The programs provide a general framework for similarity searching;they include functions for reading in query sequences, searchparameters and library entries, and reporting the results ofa search. We have isolated the code for the specific functionthat calculates the similarity score between the query and librarysequence; alternative searching algorithms can be implementedby editing two files. We have implemented the rapid FASTA sequencecomparison algorithm and the more rigorous Smith — Watermanalgorithm within this framework. The PSCANLIB program on a 16node iPSC/2 80386-based hypercube can compare a 229 amino acidprotein sequence with a 3.4 million residue sequence libraryin {small tilde}16s with the FASTA algorithm. Using the Smith— Waterman algorithm, the same search takes 35 min. ThePCOMPUB program can compare a 0.8 millon amino acid proteinsequence library with itself in 5.3 min with FASTA on a third-generation32 node Intel iPSC/860 hypercube. Received on September 8, 1990; accepted on December 15, 1990  相似文献   

19.
20.
A new approach to sequence comparison: normalized sequence alignment   总被引:3,自引:0,他引:3  
The Smith-Waterman algorithm for local sequence alignment is one of the most important techniques in computational molecular biology. This ingenious dynamic programming approach was designed to reveal the highly conserved fragments by discarding poorly conserved initial and terminal segments. However, the existing notion of local similarity has a serious flaw: it does not discard poorly conserved intermediate segments. The Smith-Waterman algorithm finds the local alignment with maximal score but it is unable to find local alignment with maximum degree of similarity (e.g. maximal percent of matches). Moreover, there is still no efficient algorithm that answers the following natural question: do two sequences share a (sufficiently long) fragment with more than 70% of similarity? As a result, the local alignment sometimes produces a mosaic of well-conserved fragments artificially connected by poorly-conserved or even unrelated fragments. This may lead to problems in comparison of long genomic sequences and comparative gene prediction as recently pointed out by Zhang et al. (Bioinformatics, 15, 1012-1019, 1999). In this paper we propose a new sequence comparison algorithm (normalized local alignment ) that reports the regions with maximum degree of similarity. The algorithm is based on fractional programming and its running time is O(n2log n). In practice, normalized local alignment is only 3-5 times slower than the standard Smith-Waterman algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号