首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some of the largest riverine N fluxes in the continental USA have been observed in agricultural regions with extensive artificial subsurface drainage, commonly called tile drainage. The degree to which high riverine N fluxes in these settings are due to high net N inputs (NNI), greater transport efficiency caused by the drainage systems, or other factors is not known. The objective of this study was to evaluate the role of tile drainage by comparing NNI and riverine N fluxes in regions of Illinois with similar climate and crop production practices but with different intensities of tile drainage. Annual values of NNI between 1940 and 1999 were estimated from county level agricultural production statistics and census estimates of human population. During 1945–1961, riverine nitrate flux in the extensively tile drained region averaged 6.6kgNha–1year–1 compared to 1.3 to 3.1kgNha–1 for the non-tile drained region, even though NNI was greater in the non-tile drained region. During 1977–1997, NNI to the tile-drained region had increased to 27kgNha–1year–1 and riverine N flux was approximately 100% of this value. In the non-tile-drained region, NNI was approximately 23kgNha–1year–1 and riverine N flux was between 25% and 37% of this value (5 to 9kgNha–1year–1). Denitrification is not included in NNI and, therefore, any denitrification losses from tile-drained watersheds must be balanced by other N sources, such as depletion of soil organic N or underestimation of biological N fixation. If denitrification and depletion of soil organic N are significant in these basins, marginal reductions in NNI may have little influence on riverine N flux. If tile drained cropland in Illinois is representative of the estimated 11 million ha of tile drained cropland throughout the Mississippi River Basin, this 16% of the drainage area contributed approximately 30% of the increased nitrate N flux in the Lower Mississippi River that occurred between 1955 and the 1990s.  相似文献   

2.
This paper presents a large data set on carbon isotope composition (13C) of modern soils which were collected under the main vegetation communities along an altitude of 1250–5500m above sea level in the Qinghai-Tibetan Plateau. The 13C values of 198 samples range from –28.6 to –15.1 versus PDB and exhibit a clean relation to different vegetation communities from forest (–25.9±1.2) to shrub (–24.7±1.4), steppe (–23.1±1.3), alpine meadow (–23.6±0.7), alpine desert steppe (–21.3±1.6), and alpine desert (–18.9±2.5). We attributed the observed variability in 13C values to that the mean annual precipitation (MAP) and the mean annual temperature (MAT) are the main factors controlling the distribution of vegetation types in the Tibetan Plateau, which causes the change in carbon isotope composition of modern soils at any given altitude. The result of both linear and nonlinear regression analyses also confirms that MAP and MAT are the major factors affecting the 13C values of surface soils. In the absence of favorable moisture and temperature conditions, low pCO2 alone is not sufficient to cause the distinct changes in carbon isotope composition of modern soils in the Tibetan Plateau. This study provides some fundamental information on the carbon isotope composition of terrestrial carbon pools and bears some practical significance for the use of carbon isotope data to document vegetation changes and environmental conditions of the high plateau in the past.  相似文献   

3.
Summary Several agents known to interact with the (Na++K+)-pump were tested for their effects on the components of steady-state K+ flux in ascites cells.86Rb+ was used as a tracer for K+, and influx was differentiated into a ouabain-inhibitable pump component, a Cl-dependent and furosemide-sensitive exchange component, and a residual leak flux. All agents tested (ouabain, quercetin, oligomycin, phosphate) affected both the pump flux and the Cl-linked flux. These findings suggest a linkage between the activity of the Na/K ATPase and the Cl-dependent K+ exchange flux. In the discussion we point out that the mechanism of this linkage could be direct; e.g., Cl-dependent exchange may represent a mode of operation of the Na/K ATPase. However, data from this and other systems tend to suggest an indirect linkage between the Na+ pump and a KCl symporter, perhaps via a change in the level of intracellular ATP.  相似文献   

4.
This study examined macronutrient input from pollen in two naturally regenerating pine stands in southeast Korea. Durham gravity pollen collectors were used to measure pine pollen deposition and the macronutrients in the collected pine pollen were analyzed. In 1998, pine pollen deposition began just before 18 April and lasted for approximately 2weeks. Total pine pollen deposition differed between the two sampling sites; 27.5kgha–1 was collected from the mature stand and 17.7kgha–1 was collected from the young stand. The values for nutrient deposition from pine pollen are 549gha–1 N, 78gha–1 P, 240gha–1 K, 45gha–1 S and 22gha–1 Mg at the mature stand and 353gha–1 N, 51gha–1 P, 151gha–1 K, 27gha–1 S and 14gha–1 Mg at the young stand, suggesting that nutrients from pine pollen contribute to forest nutrient cycling. The pine pollen deposition values obtained from our study (17.7–27.5kg–1ha–1year–1) are approximately 1/115–180-fold that of pine litterfall in Korea. If we take pollen nutrients into account, the contribution rate of pollen to the annual nutrient input is very high in our study (N 1/30, P 1/5, K 1/9 that of litterfall). Macronutrient deposition from pine pollen is concentrated temporally in spring. Although the annual contribution of nutrient mass by pollen is small compared to that of litterfall, the rapid turnover rate of pollen nutrients combined with episodic deposition suggests that pollen may play a disproportionate role in temperate pine forest nutrient cycling.  相似文献   

5.
Summary The enzymatic transformation of desacetyl-lanatoside A (DLA) to its secondary glycoside, digitoxin, in solutions of -and -cyclodextrins is effected using of -glucosidase from barley. Due to the interaction of cyclodextrins (CyDs) with desacetyl-lanatoside A, an increase in solubility of the latter of 24.5 and 230 times was observed for -cyclodextrin and -cyclodextrin, respectively. Kinetic studies of the enzymatic transformation gave for -glucosidase the values KM=3.3×10–4 mol. dm–3 and Vmax=0.557 mol mg–1 min–1 when the substrate was the deacetyl-lanatoside A complex with -cyclodextrin, while in the case of the complex with -cyclodextrin these values were KM=5.45×10–4 mol dm–3 and Vmax=0.896 mol mg–1 min–1.  相似文献   

6.
The present study demonstrates a procedure for the rapid development of a high number of somatic embryos from embryogenic suspension culture. This method might be efficient for mass propagation of Phnix dactylifera L. Embryogenic callus placed in liquid medium with 10–5M ABA yielded an average 72 embryos per 100ml of culture medium within 2months, while those placed on solid medium yielded an average of 33, 20 and 16 embryos per 100ml of culture medium respectively for 10–7, 10–6 and 10–5 M ABA after 4months. The combination of 2,4-DIchlorophenoxyacetic acid (2,4-D) (4.5×10–7M), glutamine (6.7×10–4M), and ABA (10–5M) (L8 liquid medium) showed a beneficial effect on somatic embryos production compared to 2,4-D and glutamine alone, while this combination significantly (p<0.05) increased the accumulation of storage proteins (144 and 138mgg–1 DW respectively for Jihel and Bousthami noir cultivars) in somatic embryos. The somatic embryos which underwent maturation on medium containing only 4.5×10–7M 2,4-D and 10–5M ABA (L6 liquid medium) accumulated more sugars (292 and 265mgg–1 DW respectively for Jihel and Bousthami noir) than those matured on any other liquid medium. Histological studies revealed that somatic embryos (developed in L6 and L8 liquid media) accumulated less reserve compounds (proteins and sugars) than zygotic embryos. The addition of activated charcoal (0.25 and 0.5gl–1) and phytagel® (2.5gl–1) to the germination medium may be useful for enhancing the germination of Phnix dactyliferasomatic embryos.  相似文献   

7.
Wen  Zhao  Shuang-Lin  Dong 《Hydrobiologia》2003,492(1-3):181-190
Primary productivity, biomass and chlorophyll-a of size fractionated phytoplankton (<0.22 m, <3 m, <8 m, <10 m, <40 m, <64 m, <112 m and <200 m) were estimated in 6 ponds and 5 experimental enclosures. The results showed that the planktonic algae less than 10 m are important in the biomass and production of phytoplankton in saline–alkaline ponds. The production of size fractionated phytoplankton corresponding to <112 m, <10 m and <3 m in saline–alkaline ponds were 10.5 ± 6.6 , 8.6 ± 5.4 and 0.33 ± 0.1 mgC l–1 d–1, respectively. Mean community respiration rate was 1.80 ± 0.73, 1.69 ± 0.90 and 1.38 ± 1.12 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) were 1.61, 8.30 and 0.33 mgC l–1 d–1, respectively. The ratio of those to the total phytoplankton production was 15%, 79% and 3%, respectively. The mean respiration rate of the different size groups was 0.11, 0.31 and 1.38 mgC l–1 d–1; the ratio of those to total respiration of phytoplankton was 6%, 17% and 77%, respectively. The production of size-fractionated phytoplankton corresponding to <200 m, <10 m and <3 m in enclosures was 2.19 ± 1.63, 2.08 ± 1.75 and 0.22 ± 0.08 mgC l–1 d-1, respectively. Mean community respiration rates were 1.25 ± 1.55, 1.17 ± 1.42 and 0.47 ± 0.32 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton was 0.11, 1.86 and 0.22 mgC l–1 d–1, respectively. The ratio of those to the total production of phytoplankton was 5%, 85% and 10%, respectively. The mean respiration rate of different size groups were 0.08, 0.72 and 0.46 mgC l–1 d–1, the ratio of those to total respiration of phytoplankton was 6%, 57% and 37%, respectively. The concentrations of chlorophyll-a of the phytoplankton in the corresponding size of micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) plankton in the experimental ponds were 19.3, 98.2 and 11. 9 g l–1, respectively. The ratio of those to the total chlorophyll-a was 15%, 76% and 9%, respectively. The concentrations of chlorophyll-a of phytoplankton micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton in enclosures were 1.7, 34.3 and 3.0 g l–1, respectively. The ratio of those to the total chlorophyll-a was 4%, 88% and 8%, respectively.  相似文献   

8.
Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4mg l–1), shark routine swimming speed averaged 25.5 and 31.0cm s–1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0cm s–1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6 mg O2kg–1h–1 for S. tiburo, 437.2mg O2kg–1h–1 for C. acronotus, and 161.4mg O2 kg–1 h–1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged 1.0cm whereas M. norrisi gillbeats averaged 56.0 beats min–1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39cm s–1, 2.5–3.0cm and 496 and 599mg O2 kg–1 h–1 under hypoxic conditions (2.5–3.4mg l–1), respectively. M. norrisi decreased swimming speeds to 16cm s–1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.  相似文献   

9.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

10.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

11.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

12.
In order to maintain axenic seedstock cultures axenically of thecommercially important red seaweed, Porphyra yezoensis, aprocedure was developed for axenic isolation and culture of conchocelis andmonospores. For axenic isolation of the conchocelis, contaminated microalgaewere most effectively removed by filtering contaminated samples through a100-m mesh after sonication. Removal of bacteria and otheralgaewas accomplished using a mixture of 5 agents (0.02% chitosan, 100 gml–1 GeO2, 10 gml–1 ampicillin, 40 gml–1 kanamycin and 200 gml–1 streptomycin). Axenic single colonies wereisolatedfrom a semi-solid medium prepared from 1% transfer gel. After collectingmonospores from the 40–50% density layer on a percoll-gradient, removalofbacteria and fungi from the monospores was accomplished using a mixture of 5antibiotics (3.5 g ml–1 nystatin, 2 mgml–1 ampicillin, 400 gml–1 kanamycin, 50 gml–1 neomycin and 800 gml–1 streptomycin). Axenic single juvenile blades wereisolated from a semi-solid medium prepared from 0.5% transfer gel.  相似文献   

13.
Summary Observations of aperture changes as sucrose is added to the solution bathing epidermal strips ofCommelina communis L. allow calculation of the osmotic changes required to open or close the stomatal pore, for comparison with changes in potassium content. With isolated guard cells, in strips in which all cells other than guard cells have been killed, the internal osmotic changes required are 83 mosmol kg–1 m–1 below 10m aperture, 129 mosmol kg–1 m–1 in the range 10–15 m, and 180 mosmol kg–1 m–1 above 15 m. For opening against subsidiary cell turgor in addition to guard cell turgor, in intact strips with live subsidiary and epidermal cells, these figures should each be increased by about 33 mosmol kg–1 m–1. A change in subsidiary cell turgor is magnified in its effects on the water relations of the guard cell by a factor greater than 3.7 for equal changes in the water potential of the two cells, or greater than 4.7 at constant volume of the guard cell.  相似文献   

14.
Synopsis Arsenic persists in Chautauqua Lake, New York waters 13 years after cessation of herbicide (sodium arsenite) application and continues to cycle within the lake. Arsenic concentrations in lake water ranged from 22.4–114.81 g l–1, = 49.0 ag l–1. Well water samples generally contained less than 10 g l–1 arsenic. Arsenic concentrations in lake water exceeded U.S. Public Health Service recommended maximum concentrations (10 g l–1) and many samples exceeded the maximum permissible limit (50 g l–1). Fish accumulated arsenic from water but did not magnify it. Fish to water arsenic ratios ranged from 0.4–41.6. Black crappie (Pomoxis nigromaculatus) contained the highest arsenic concentrations (0.14–2.04 g g–1 ), X = 0.7 g g–1) while perch (Perca flavescens), muskellunge (Esox masquinongy) and largemouth bass (Micropterus salmoides) contained the lowest concentrations (0.02–0.13 g g–1). Arsenic concentrations in fish do not appear to pose a health hazard for human consumers.  相似文献   

15.
Planktonic microbial interactions in the central basin of Lake Baikal were examined on a summer day in 1999. The subsurface maxima of bacterial abundance and chlorophyll concentration were recorded at the same depth, whereas the vertical distribution of heterotrophic nanoflagellates was the inverse of those of bacteria and picophytoplankton. Release of extracellular organic car-bon (EOC) from phytoplankton was estimated by the NaH14CO3 method as 2.4µgCl–1day–1. Bacterial production (4.3µgCl–1day–1), estimated in a bottle incubation experiment using size-fractionated water samples, exceeded the EOC released. Thus, other supplying sources of organic matter are needed for the bacterial production. Grazing (2.6µgCl–1day–1) was also estimated in the experiment and accounted for 60% of the bacterial production. This is the first report on the microbial food web in the central basin of Lake Baikal.  相似文献   

16.
A method of measuring CO2gas exchange (caused, for example, by microalgal photosynthesis on emersed tidal mudflats) using open flow IR gas analyzers is described. The analyzers are integrated in a conventional portable photosynthesis system (LI-6400, LI-COR, Nebraska, USA), which allows manipulation and automatic recording of environmental parameters at the field site. Special bottomless measuring chambers are placed directly on the surface sediment. Measurements are performed under natural light conditions and ambient CO2concentrations, as well as under different CO2concentrations in air, and various PAR radiation levels produced by a LED light source built into one of the measurement chambers. First results from tidal channel banks in a north Brazilian mangrove system at Bragança (Pará, Brazil) under controlled conditions show a marked response of CO2assimilation to CO2concentration and to irradiance. Photosynthesis at 100molmol–1CO2in air in one sample of a well-developed algal mat was saturated at 309mol photons m–2s–1, but increased with increasing ambient CO2concentrations (350 and 1000mol mol–1CO2) in the measuring chamber. Net CO2assimilation was 0.8mol CO2m–2s–1at 100mol mol–1CO2, 5.9mol CO2m–2s–1at 350mol mol–1CO2and 9.8mol CO2m–2s–1at 1000mol mol–1CO2. Compensation irradiance decreased and apparent photon yield increased with ambient CO2concentration. Measurements under natural conditions resulted in a quick response of CO2exchange rates when light conditions changed. We recommend the measuring system for rapid estimations of benthic primary production and as a valuable field research tool in connection with certain ecophysiological aspects under changing environmental conditions.  相似文献   

17.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

18.
Two samples of red soil, one from Gushikawa Recreation Center (GRC) and one from Okinawa Royal Golf Club (ORGC), were examined for particle size distribution, textures, minerals, and chemical compositions. The effects of particle size and grinding of clay minerals on pH, electrical conductivity (EC), and dissolved chemical species were studied in deionized water and river water. The results of red soil solutions were compared with those of acidic waters found in red soil dominated areas. The minimum pH values of soil solutions extracted by deionized water were 4.38–5.36 and 5.16–5.89 and the maximum values of EC were 4.91–16.98mSm–1 and 3.54–11.23mSm–1 for GRC and ORGC, respectively. In the river water samples equilibrated with red soils, the minimum pH values were 4.48–5.10 and 4.77–5.91 and the maximum EC values were 19.6–34.2mSm–1 and 17.5–25.0mSm–1 for GRC and ORGC, respectively. The values of pH and EC varied with the soil–solution ratio and the particle size. The chemical composition of river water without mixing with red soil shows Na+K+ and Ca2+Mg2+. After mixing with red soil, the trend of the concentrations changed to Na+K+ and Mg2+Ca2+, which is the same as that of soil solutions in deionized water as well as that of acidic waters found in the red soil area. The pH of the acidic waters was 4.95–5.81 and EC was 7.76–30.0mSm–1. Laboratory experimental results agreed well with those found in the field in terms of trend of concentrations of the chemical species and pH. Therefore, the results of this study suggest that the low pH and trend of the concentrations of chemical species of the acidic waters found in the red soil dominated areas were the result of the interaction of natural water and red soil.  相似文献   

19.
Compartmentation and flux characteristics of nitrate in spruce   总被引:8,自引:0,他引:8  
The radiotracer13N was used to undertake compartmental analyses for NO 3 in intact non-mycorrhizal roots ofPicea glauca (Moench) Voss. seedlings. Three compartments were defined, with half-lives of exchange of 2.5 s, 20 s, and 7 min. These were identified as representing surface adsorption, apparent free space, and cytoplasm, respectively. Influx, efflux, and net flux as well as cytoplasmic and apparent-free-space nitrate concentrations were estimated for three different concentration regimes of external nitrate. After exposure to external NO 3 for 3 d, influx was calculated to be 0.09 mol·g–1·h–1 (at 10 M [NO 3 ]o), 0.5mol·g–1·h–1 (at 100 M [NO inf3 sup– ]o), and 1.2 mol · g–1· h–1 (at 1.5 mM [NO 3 ]o). Efflux increased with increasing [NO 3 ]o, constituting 4% of influx at 10 M, 6% at 100 M, and 21% at 1.5 mM. Cytoplasmic [NO 3 ] was estimated to be 0.3 mM at 10 uM [NO 3 ]o, 2mM at 100 M [NO 3 ]o, and 4mM at 1.5 mM [NO 3 ]o, while free-space [NO 3 ] was 16 M, 173 M, and 2.2 mM, respectively. A series of experiments was carried out to confirm the identity of the compartments resolved by efflux analysis. Pretreatment at high temperature or application of 2-chloro-ethanol, sodium dodecyl sulphate or hydrogen peroxide made it possible to distinguish the metabolic (cytoplasmic) phase from the remaining two (physical) phases. Likewise, varying [Pi] of the medium altered efflux and thereby [NO 3 ]cyt, but did not affect [NO 3 ]free space.Abbreviations and Symbols [NO 3 ]cyt cytoplasmic NO 3 concentration - [NO 3 ]free space apparent-free-space NO 3 concentration - [NO 3 ]o concentration of NO 3 in the external solution - NO 3 flux - co efflux from the cytoplasm - oc influx to the cytoplasm - net net flux - xylem flux to the xylem - red/vac combined flux to reduction and the vacuole The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia Campus for providing13NO 3 , Drs. R.D. Guy and S. Silim for providing plant material, and Dr. M.Y. Wang, Mr. J. Mehroke and Mr. P. Poon for assistance in experiments and for helpful discussions.  相似文献   

20.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号