首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylserine (PtdSer) in Chinese hamster ovary (CHO) cells is synthesized through the action of PtdSer synthase (PSS) I and II, which catalyzes the exchange of L-serine with the base moiety of phosphatidylcholine and phosphatidylethanolamine, respectively. The PtdSer synthesis in a CHO cell mutant, PSA-3, which lacks PSS I but has normal PSS II activity, was almost completely inhibited by the addition of PtdSer to the culture medium, like that in the wild-type CHO-K1 cells. In contrast, the PtdSer synthesis in a PSS II-overproducing stable transformant of CHO-K1, K1/wt-pssB, was reduced by only 35% upon addition of PtdSer. The serine exchange activity in a membrane fraction of K1/wt-pssB cells was not inhibited by PtdSer at all, whereas those of PSA-3 and CHO-K1 cells were inhibited by >95%. These results indicated that PSS II activity in PSA-3 and CHO-K1 cells is inhibited by exogenous PtdSer and that overproduction of PSS II leads to the loss of normal control of PSS II activity by exogenous PtdSer. Although overproduced PSS II in K1/wt-pssB cells was not normally controlled by exogenous PtdSer, K1/wt-pssB cells cultivated without exogenous PtdSer exhibited a normal PtdSer biosynthetic rate similar to that in CHO-K1 cells. In contrast to K1/wt-pssB cells, another stable transformant of CHO-K1, K1/R97K-pssB, which overproduces R97K mutant PSS II, exhibited a approximately 4-fold higher PtdSer biosynthetic rate compared with that in CHO-K1 cells. These results suggested that for maintenance of a normal PtdSer biosynthetic rate, the activity of overproduced wild-type PSS II in K1/wt-pssB cells is depressed by an as yet unknown post-translational mechanisms other than those for the exogenous PtdSer-mediated inhibition and that Arg-97 of PSS II is critical for this depression of overproduced PSS II activity. When the cDNA-directed wild-type and R97K mutant PSS II activities were expressed at nonoverproduction levels in a PSS I- and PSS II-defective mutant of CHO-K1 cells, expression of the mutant PSS II activity but not that of the wild-type PSS II activity induced the PtdSer-resistant PtdSer biosynthesis. This suggested that Arg-97 of PSS II is critical also for the exogenous PtdSer-mediated inhibition of PSS II.  相似文献   

2.
We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.  相似文献   

3.
4.
A mutant cell line (designated M.9.1.1) requiring ethanolamine for growth was derived from Chinese hamster ovary (CHO-K1) cells using 5-bromodeoxyuridine enrichment. The ethanolamine requirement was readily replaced by 20 microM phosphatidylserine and 10 microM lysophosphatidylethanolamine. When M.9.1.1 cells were supplemented with phosphatidyl[3H]serine it was rapidly taken up, and subsequently decarboxylated to form phosphatidyl[3H]ethanolamine. The incorporation of [3H]serine into phosphatidylserine in the mutant cells was 57% of that in the parental cells. Phosphatidylethanolamine synthesis from [3H]serine in the mutant cells was 35% of that in parental cells. When M.9.1.1 cells were deprived of ethanolamine for 48 h the level of phosphatidylserine decreased 34% and the level of phosphatidylethanolamine decreased 26% compared to parental cells. At the same time the rate of turnover of phosphatidylserine was reduced to half that found in parental cells. Examination of the enzymes of phosphatidylserine metabolism indicated defective phosphatidylserine synthase activity in the mutant. When exogenous phosphatidylcholine was used as the phospholipid substrate for the reaction the apparent kinetic constants were Vmax (mutant) = 5.7 pmol/min/mg protein and Vmax (parental) = 17.5 pmol/min/mg protein. Measurement of the back reaction (ATP-independent incorporation of choline into phospholipid) gave no detectable activity in the mutant cells. The data indicate that the phosphatidylcholine-dependent synthesis of phosphatidylserine is the primary lesion in M.9.1.1.  相似文献   

5.
In the preceding paper, we reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine (Kuge, O., Nishijima, M., and Akamatsu, Y. (1986) J. Biol. Chem. 261, 5790-5794). In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with [32P]phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with [32P]phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.  相似文献   

6.
One mechanism by which communication between the endoplasmic reticulum (ER) and mitochondria is achieved is by close juxtaposition between these organelles via mitochondria-associated membranes (MAM). The MAM consist of a region of the ER that is enriched in several lipid biosynthetic enzyme activities and becomes reversibly tethered to mitochondria. Specific proteins are localized, sometimes transiently, in the MAM. Several of these proteins have been implicated in tethering the MAM to mitochondria. In mammalian cells, formation of these contact sites between MAM and mitochondria appears to be required for key cellular events including the transport of calcium from the ER to mitochondria, the import of phosphatidylserine into mitochondria from the ER for decarboxylation to phosphatidylethanolamine, the formation of autophagosomes, regulation of the morphology, dynamics and functions of mitochondria, and cell survival. This review focuses on the functions proposed for MAM in mediating these events in mammalian cells. In light of the apparent involvement of MAM in multiple fundamental cellular processes, recent studies indicate that impaired contact between MAM and mitochondria might underlie the pathology of several human neurodegenerative diseases, including Alzheimer's disease. Moreover, MAM has been implicated in modulating glucose homeostasis and insulin resistance, as well as in some viral infections.  相似文献   

7.
The second step in glycosylphosphatidylinositol biosynthesis is the de-N-acetylation of N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) catalyzed by N-acetylglucosaminylphosphatidylinositol deacetylase (PIG-L). Previous studies of mouse thymoma cells showed that GlcNAc-PI de-N-acetylase activity is localized to the endoplasmic reticulum (ER) but enriched in a mitochondria-associated ER membrane (MAM) domain. Because PIG-L has no readily identifiable ER sorting determinants, we were interested in learning how PIG-L is localized to the ER and possibly enriched in MAM. We used HeLa cells transiently or stably expressing epitope-tagged PIG-L variants or chimeric constructs composed of elements of PIG-L fused to Tac antigen, a cell surface protein. We first analyzed the subcellular distribution of PIG-L and Glc-NAc-PI-de-N-acetylase activity and then studied the localization of Tac-PIG-L chimeras to identify sequence elements in PIG-L responsible for its subcellular localization. We show that human PIG-L is a type I membrane protein with a large cytoplasmic domain and that, unlike the result with mouse thymoma cells, both PIG-L and GlcNAc-PI-de-N-acetylase activity are uniformly distributed between ER and MAM in HeLa cells. Analyses of a series of Tac-PIG-L chimeras indicated that PIG-L contains two ER localization signals, an independent retention signal located between residues 60 and 88 of its cytoplasmic domain and another weak signal in the luminal and transmembrane domains that functions autonomously in the presence of membrane proximal residues of the cytoplasmic domain that themselves lack any retention information. We conclude that PIG-L, like a number of other ER membrane proteins, is retained in the ER through a multi-component localization signal rather than a discrete sorting motif.  相似文献   

8.
Phosphatidylserine (PS) is a quantitatively minor, but physiologically important, phospholipid in mammalian cells. PS is synthesized by two distinct base-exchange enzymes, PS synthase-1 (PSS1) and PS synthase-2 (PSS2), that are encoded by different genes. PSS1 exchanges serine for choline of phosphatidylcholine, whereas PSS2 exchanges ethanolamine of phosphatidylethanolamine for serine. We previously generated mice lacking PSS2 (Bergo, M. O., Gavino, B. J., Steenbergen, R., Sturbois, B., Parlow, A. F., Sanan, D. A., Skarnes, W. C., Vance, J. E., and Young, S. G. (2002) J. Biol. Chem. 277, 47701-47708) and found that PSS2 is not required for mouse viability. We have now generated PSS1-deficient mice. In light of the markedly impaired survival of Chinese hamster ovary cells lacking PSS1 we were surprised that PSS1-deficient mice were viable, fertile, and had a normal life span. Total serine-exchange activity (contributed by PSS1 and PSS2) in tissues of Pss1(-/-) mice was reduced by up to 85%, but except in liver, the PS content was unaltered. Despite the presumed importance of PS in the nervous system, the rate of axonal extension of PSS1-deficient neurons was normal. Intercrosses of Pss1(-/-) mice and Pss2(-/-) mice yielded mice with three disrupted Pss alleles but no double knockout mice. In Pss1(-/-)/Pss2(-/-) and Pss1(-/-)/Pss2(-/-) mice, serine-exchange activity was reduced by 65-91%, and the tissue content of PS and phosphatidylethanolamine was also decreased. We conclude that (i) elimination of either PSS1 or PSS2, but not both, is compatible with mouse viability, (ii) mice can tolerate as little as 10% of normal total serine-exchange activity, and (iii) mice survive with significantly reduced PS and phosphatidylethanolamine content.  相似文献   

9.
Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with 32Pi and L-[U-14C]serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.  相似文献   

10.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

11.
A tritium suicide procedure was devised to facilitate the isolation of Chinese hamster ovary cell mutants defective in phosphatidylethanolamine biosynthesis. One mutant with a 20-50% reduction in [3H]ethanolamine incorporation was chosen for further analysis and was shown to have reduced activity of CTP: phosphoethanolamine cytidylyltransferase. Levels of phosphatidylethanolamine and rates of its biosynthesis were compared in the mutant and parent cell lines. Despite the reduced activity of the CDP-ethanolamine pathway in the mutant, levels of phosphatidylethanolamine were the same in mutant and parent cells. Rates of phosphatidylethanolamine synthesis de novo, as measured by incorporation of 32PO4 into phosphatidylethanolamine, were also the same in mutant and parent cells, as was the rate of incorporation of [3H]serine into both phosphatidylserine and phosphatidylethanolamine. After a long term labeling with [3H]serine, the specific radioactivity of phosphatidylserine was the same as that of phosphatidylethanolamine, and there was no difference in the specific radioactivities of the two lipids between mutant and parent cells. These results implicate decarboxylation of phosphatidylserine as the sole route for synthesis of phosphatidylethanolamine under normal culture conditions.  相似文献   

12.
Since phospholipids are major components of all serum lipoproteins, the role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine is made both by the CDP-choline pathway and by the methylation of phosphatidylethanolamine, which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanolamine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [1-3H] ethanolamine, or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the cultured medium. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine derived from [1-3H]ethanolamine were markedly lower (approximately one-half and less than one-tenth, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of phosphatidylcholine made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were significantly higher in the lipoproteins than in the cells. These data indicate that there is not a random and homogeneous labeling of the phospholipid pools from the radioactive precursors. Instead, specific pools of phospholipids are selected, on the basis of their routes of biosynthesis, for secretion into lipoproteins.  相似文献   

13.
The calcium-dependent, energy-independent incorporations of 14C-labeled bases, choline, ethanolamine, and serine, into their corresponding membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, were compared in microsomes and in subcellular fractions prepared from a lysed crude mitochondrial (P2) pellet of whole rat brain. When activities were measured in the presence of an extracellular (1.25 mM) concentration of Ca2+, recovered activities were highest in the microsomal fraction, although substantial activity remained associated with the P2 homogenate even after repeated washing of the pellet. When this washed P2 homogenate was subfractionated, enrichment of all three exchange activities was obtained only in a fraction that was fivefold enriched over the homogenate and sevenfold enriched over the microsomal fraction in Na+, K+-ATPase, a plasma membrane marker. This strongly suggests that the base-exchange enzymes are normal constituents of synaptosomal plasma membranes. The three exchange activities were measured in synaptosomes prepared from whole rat brain in the presence of various substrate (base) concentrations, and kinetic constants were calculated. The Vmax values for choline, ethanolamine, and serine exchange were, respectively, 1.27 +/- 0.09, 1.60 +/- 0.17, and 0.56 +/- 0.06 nmol/mg of protein/h; the respective Km (apparent) values were 241 +/- 29, 65 +/- 18, and 77 +/- 22 microM. Endogenous levels of the three bases, choline, ethanolamine, and serine, in whole (microwaved) rat brains were 20 +/- 8, 78 +/- 28, and 639 +/- 106 nmol, respectively. That ethanolamine and serine incorporations had lower Km values than choline incorporation suggests that these bases are preferentially incorporated into their respective phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Phosphatidylserine synthase is found predominantly in the microsomal fraction, and phosphatidylserine decarboxylase is found predominantly in the mitochondrial fraction of baby hamster kidney (BHK-21) cells. This segregation of enzymes of phosphatidylserine metabolism allows serine metabolism to phosphatidylserine and phosphatidylethanolamine to be used as an indicator of the intracellular movement of phosphatidylserine. After BHK-21 cells were pulse-labeled with [3H]serine, phosphatidylserine was efficiently labeled, and subsequently 40-50% of this radiolabeled lipid turned over to form phosphatidylethanolamine during a 7.5-h chase. Treatment of cells with NaN3 plus NaF or cycloheximide at the end of the pulse labeling period markedly inhibited the rate and extent of phosphatidylserine turnover during the chase period. The inhibition of phosphatidylserine turnover could not be attributed to inhibition of either phosphatidylserine decarboxylase or phosphatidylserine exchange protein activity. Subcellular fractionation of the BHK-21 cells demonstrated that cells poisoned with NaN3 plus NaF accumulated phosphatidylserine in the microsomal fraction relative to unpoisoned cells. The results indicate that metabolic energy is required for the transport of phosphatidylserine to the mitochondria.  相似文献   

15.
Epithelial cells and some of their transformed derivatives require ethanolamine to grow normally in defined culture medium. When these cells are cultured without ethanolamine, the amount of cellular phosphatidylethanolamine is considerably reduced. Using a set of rat mammary carcinoma cell lines whose growth is responsive (64-24 cells) and not responsive (22-1 cells) to ethanolamine, the biochemical mechanism of ethanolamine responsiveness was investigated. The biosynthesis and metabolism of phospholipid, particularly of those involving phosphatidylethanolamine, were thus compared between the two types of cells. The incorporation of [3H]serine into phosphatidylserine and phosphatidylethanolamine in 64-24 cells was 60 and 37%, respectively, of those in 22-1 cells. However, the activity of phosphatidylserine decarboxylase was virtually the same in these cell lines. When these cells were cultured in the presence of [32P]phosphatidylcholine and [32P]phosphatidylethanolamine, the rate of accumulation of 32P-labeled phosphatidylserine from the radioactive phosphatidylethanolamine was considerably reduced in 64-24 cells compared to that in 22-1 cells, although the rate of synthesis of phosphatidylserine and phosphatidylethanolamine from the radioactive phosphatidylcholine was similar between the two cell lines. The rate of labeling phosphatidylcholine from the radioactive phosphatidylethanolamine was also reduced in 64-24 cells, although the difference was not as great as that of phosphatidylserine. Incorporation of 32P into phosphatidylethanolamine was correlated with the concentration of ethanolamine in the culture medium in 64-24 cells, whereas in 22-1 cells the incorporation was not influenced by ethanolamine. Enzyme activities of the CDP-ethanolamine pathway were not significantly different between the two cell lines. The rate of degradation of phosphatidylethanolamine was also similar in these cell lines. These results show that ethanolamine responsiveness of 64-24 cells, and probably other epithelial cells, is due to a limited ability to synthesize phosphatidylserine resulting from a limited base-exchange activity utilizing phosphatidylethanolamine.  相似文献   

16.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   

17.
When radiolabeled serine is incubated with a particulate fraction from Saccharomyces cerevisiae, radioactivity is incorporated initially into phosphatidylserine and gradually appears in phosphatidylethanolamine. Because decarboxylation of phosphatidylserine is blocked by hydroxylamine, phosphatidylserine synthase can be assayed separately. The yeast phosphatidylserine synthase activity 1) exhibits a divalent cation requirement; 2) is stimulated by exogenous CDP-diolein (apparent Km = 0.17 mM); 3) has an apparent Km = 4 mM for L-serine; 4) has a neutral pH optimum; 5) is inhibited by p-hydroxymercuribenzoate; and 6) is reversible in the presence of 5'-CMP, but not 2'-CMP, 3'-CMP, or 5'-AMP. The phospholipid-synthesizing activity is solubilized with Triton X-100 and the enzymatic parameters have been compared with the particulate form of the enzyme. Detergent extracts catalyze the conversion of exogenous purified [31P]CDP-diglyceride to [32P]phosphatidylserine in the presence of Mn2+ and L-serine. Enzyme preparations from cells grown in the presence of choline, that have reduced phospholipid methylation activity (Waechter, C. J., Steiner, M. R., and Lester, R. L. (1969) J. Biol. Chem. 244, 3419-3422), also have substantially less phosphatidylserine synthase activity compared to identical preparations grown in the absence of choline. When choline, phosphocholine, CDP-choline, and phosphatidylcholine are present in vitro, there is no direct inhibitory effect on phosphatidylserine synthase activity. While the inclusion of choline in the growth medium caused a significant reduction in phosphatidylserine synthase activity, it did not appreciably effect the apparent Km values for L-serine and CDP-diglyceride. These results are consistent with choline-grown cells containing less phosphatidylserine synthase activity because of lower amounts of enzyme present or perhaps less active enzyme due to covalent modification.  相似文献   

18.
The role of serine as a precursor and metabolic regulator for phosphatidylethanolamine biosynthesis in the hamster heart was investigated. Hearts were perfused with 50 microM [1-3H]ethanolamine in the presence or absence of serine for up to 60 min. Ethanolamine uptake was attenuated by 0.05-10 mM serine in a noncompetitive manner, and the incorporation of labeled ethanolamine into phosphatidylethanolamine was also inhibited by serine. Analysis of the ethanolamine-containing metabolites in the CDP-ethanolamine pathway revealed that the conversion of ethanolamine to phosphoethanolamine was reduced. The reduction was a result of an inhibition of ethanolamine kinase activity by an elevated pool of intracellular serine. Perfusion of the heart with 1 mM serine caused a 5-fold increase in intracellular serine pool. In order to examine the action of serine on other phosphatidylethanolamine metabolic pathways, hearts were perfused with [1-3H]glycerol in the presence and absence of serine. Serine did not cause any enhancement of phosphatidylethanolamine hydrolysis. The base-exchange reaction for phosphatidylserine formation or the decarboxylation of phosphatidylserine was not affected by serine perfusion. We conclude that circulating serine plays an important role in the modulation of phosphatidylethanolamine biosynthesis via the CDP-ethanolamine pathway in the hamster heart but does not affect the contribution of the decarboxylase pathway for phosphatidylethanolamine formation.  相似文献   

19.
The Ca2+ dependent incorporation of [14C]ethanolamine, L-[14C]serine and [14C]choline into phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine, respectively, were investigated in membrane preparations from rat heart. The ethanolamine and serine base-exchange enzyme-catalyzed reactions were associated with the sarcolemma and sarcoplasmic reticulum. There was a 17.2-fold and 6.8-fold enrichment, respectively, of the serine and the ethanolamine base-exchange enzyme activities in the sarcolemma compared to the starting whole homogenate. The sarcoplasmic reticulum was enriched in the ethanolamine and serine base-exchange enzyme activities. The choline base-exchange enzyme activity of all membranes fractions was negligible compared to the ethanolamine or serine base-exchange enzyme activities. The apparent Km for the ethanolamine and serine base-exchange enzyme in sarcolemma was 14 microM and 25 microM, respectively. The pH optimum for these base-exchange activities was 7.5-8.0. There was a dependence upon Ca2+ for these reactions with a 1 or 4 mM concentration required for maximal activity. The properties of the sarcoplasmic reticulum base-exchange enzymes were similar to the sarcolemmal base-exchange enzymes.  相似文献   

20.
Ethanolamine kinase (EKI) is the first committed step in phosphatidylethanolamine (PtdEtn) biosynthesis via the CDP-ethanolamine pathway. We identify a human cDNA encoding an ethanolamine-specific kinase EKI1 and the structure of the EKI1 gene located on chromosome 12. EKI1 overexpression in COS-7 cells results in a 170-fold increase in ethanolamine kinase-specific activity and accelerates the rate of [3H]ethanolamine incorporation into PtdEtn as a function of the ethanolamine concentration in the culture medium. Acceleration of the CDP-ethanolamine pathway does not result in elevated cellular PtdEtn levels, but rather the excess PtdEtn is degraded to glycerophosphoethanolamine. EKI1 has negligible choline kinase activity in vitro and does not influence phosphatidylcholine biosynthesis. Acceleration of the CDP-ethanolamine pathway also does not change the rate of PtdEtn formation via the decarboxylation of phosphatidylserine. The data demonstrate the existence of separate ethanolamine and choline kinases in mammals and show that ethanolamine kinase can be a rate-controlling step in PtdEtn biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号