共查询到20条相似文献,搜索用时 0 毫秒
1.
Computational identification and analysis of immune-associated nucleotide gene family in Arabidopsis thaliana 总被引:1,自引:0,他引:1
GTP-binding proteins represent a ubiquitous regulatory mechanism in controlling growth and development in eukaryotes under normal and stress conditions. The IAN/GIMAP proteins belong to a novel family of functionally uncharacterized GTP-binding proteins expressed in both plant and vertebrate cells during anti-pathogenic responses. To gain novel insights into their roles in plants, we did genome-wide analysis of the IAN/GIMAP gene family. We identified 13 Arabidopsis IAN/GIMAP genes, which share similar gene structures and mostly reside in a tandem cluster on chromosomes. Sequence comparison reveals that these genes encode 26–52 kDa proteins with one GTP-binding domain and a conserved box unique to the family. Phylogenetic analysis suggests that the IAN/GIMAP genes of angiosperms and vertebrates may have evolved by independent gene duplication events. GENEVESTIGATOR sources were mined for comprehensive and comparative Arabidopsis IAN/GIMAP gene family expression analysis. These data reveal that IAN/GIMAPs exhibit diverse expression patterns during development and in response to external stimuli, indicating that these paralogous genes are likely involved in complex biological processes in Arabidopsis. Our present findings provide a basis for elucidating the novel GTPase family protein-mediated regulatory mechanisms in the future. 相似文献
2.
The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall. 相似文献
3.
Summary Aspects of megasporogenesis in Arabidopsis thaliana have been investigated using a variety of histochemical techniques to visualize general cell organization, DNA and callose in whole ovules and sections by bright field, fluorescence, differential interference contrast and scanning electron microscopy. The microtubular cytoskeleton has been studied using immunofluorescence localization of tubulin in sections and whole cells. The observations deviate from reports of preceding studies in that the megasporocyte was found to undergo both meiotic divisions followed by simultaneous cytokinesis (i.e. without an intermediate dyad stage) to give a multiplanar tetrad of megaspores. This represents a variation of monosporic development not previously described. Polarized distribution of organelles prior to meiosis ensures that the functional megaspore receives the largest share. Aberrant wall formation is common between degenerating megaspores. Localized callose deposition in the tetrad separates these cells from the active megaspore. Their pattern of degeneration and displacement is extremely flexible within the embryo sac space. The microtubular cytoskeleton is extensive and largely cytoplasmic, as distinct from cortical, throughout megasporogenesis. In the megasporocyte, megaspores and one-nucleate embryo sac, randomly oriented microtubules throughout the cells may serve to maintain cytoplasmic integrity and position organelles. Numerous microtubules (MTs) associate closely with the nucleus and some radiate from it, perhaps functioning in nuclear positioning. During meiosis MTs are restricted to the spindle configurations and later to the phragmoplasts which form between daughter nuclei. The lack of interphase cortical arrays suggests that the role of internal influences on cell shape is small. 相似文献
4.
A new homeobox-leucine zipper gene from Arabidopsis thaliana 总被引:3,自引:0,他引:3
Jim Mattsson Eva Söderman Marie Svenson Chumpol Borkird Peter Engström 《Plant molecular biology》1992,18(5):1019-1022
We have isolated a homeobox-containing gene from Arabidopsis thaliana using a degenerate oligonucleotide probe corresponding to the most conserved region of the homeodomain. This strategy has been used previously to isolate homeobox-containing genes from Caenorhabditis, and recently from A. thaliana. The Arabidopsis genes have an unusual structure in that they have a leucine zipper motif adjacent to the carboxy terminal region of the homeo domain, a feature not found in homeobox-containing genes isolated from animals. We report the isolation and primary structure of a new member of this Arabidopsis homeobox-leucine zipper gene family. This new member has the homeodomain and leucine-zipper motif similar to the two genes previously identified, but differs from these genes in the part corresponding to the carboxy terminus of the polypeptide, as well as in size and isoelectric point of the protein. 相似文献
5.
6.
7.
Eveline Jacques Michal Lewandowski Jan Buytaert Yves Fierens Jean-Pierre Verbelen Kris Vissenberg 《Plant signaling & behavior》2013,8(7)
The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. 相似文献
8.
9.
10.
11.
Role of auxin in regulating Arabidopsis flower development 总被引:2,自引:0,他引:2
To elucidate the role of auxin in flower morphogenesis, its distribution patterns were studied during flower development in
Arabidopsis thaliana (L.) Heynh. Expression of DR5::GUS was regarded to reflect sites of free auxin, while immunolocalization with auxin polyclonal antibodies visualized conjugated
auxin distribution. The youngest flower bud was loaded with conjugated auxin. During development, the apparent concentration
of free auxin increased in gradual patterns starting at the floral-organ tip. Anthers are major sites of high concentrations
of free auxin that retard the development of neighboring floral organs in both the acropetal and basipetal directions. The
IAA-producing anthers synchronize flower development by retarding petal development and nectary gland activity almost up to
anthesis. Tapetum cells of young anthers contain free IAA which accumulates in pollen grains, suggesting that auxin promotes
pollen-tube growth towards the ovules. High amounts of free auxin in the stigma induce a wide xylem fan immediately beneath
it. After fertilization, the developing embryos and seeds show elevated concentrations of auxin, which establish their axial
polarity. This developmental pattern of auxin production during floral-bud development suggests that young organs which produce
high concentrations of free IAA inhibit or retard organ-primordium initiation and development at the shoot tip.
Electronic Supplementary Material Supplementary material is available for this article at
This paper is dedicated to Orna Aloni for continuous support and management over many years. 相似文献
12.
Ben Scheres Heather McKhann Claudia van den Berg Viola Willemsen Harald Wolkenfelt Geert de Vrieze Peter Weisbeek 《Plant and Soil》1996,187(1):97-105
The cellular organisation of theArabidopsis thaliana root is remarkably regular. A fate map of the primary root and root meristem that predicts the developmental destinies of cells within the embryonic root primordium has been constructed. Nevertheless, laser ablation experiments demonstrate that root meristem cells develop according to position and not according to lineage. Mutational analysis has identified genes required for cell specification in the radial as well as in the apical-basal dimension. The corresponding gene functions appear to be necessary during embryogenesis for the formation of a correctly patterned primary root. H Lambers Section editor 相似文献
13.
David A. Patton Linda H. Franzmann David W. Meinke 《Molecular & general genetics : MGG》1991,227(3):337-347
Summary We have previously isolated and characterized over 90 recessive mutants of Arabidopsis thaliana defective in embryo development. These emb mutants have been shown to differ in lethal phase, extent of abnormal development, and response in culture. We demonstrate in this report the value and efficiency of mapping emb genes relative to visible and molecular markers. Sixteen genes essential for embryo development were mapped relative to visible markers by analyzing progeny of selfed F1 plants. Embryonic lethals are now the most common type of visible marker included on the linkage map of Arabidopsis. Backcrosses were used in several cases to orient genes relative to adjacent markers. Three genes were located to chromosome arms with telotrisomics by screening for a reduction in the percentage of aborted seeds produced by F1 plants. A restriction fragment length polymorphism (RFLP) mapping strategy that utilizes pooled EMB/EMB F2 plants was devised to increase the efficiency of mapping embryonic lethals relative to molecular markers. This strategy was tested by demonstrating that the biol locus of Arabidopsis is within 0.5 cM of an existing RFLP marker. Mapping embryonic lethals with both visible and molecular markers may therefore help to identify large numbers of genes with essential functions in Arabidopsis. 相似文献
14.
15.
16.
Zhang Y Brown G Whetten R Loopstra CA Neale D Kieliszewski MJ Sederoff RR 《Plant molecular biology》2003,52(1):91-102
Arabinogalactan proteins (AGPs) are abundant plant proteoglycans implicated in plant growth and development. Here, we report the genetic characterization, partial purification and immunolocalization of a classical AGP (PtaAGP6, accession number AF101785) in loblolly pine (Pinus taeda L.). A PtaAGP6 full-length cDNA clone was expressed in bacteria. PtaAGP6 resembles tomato LeAGP-1 and Arabidopsis AtAGP17-19 in that they all possess a subdomain composed of basic amino acids. The accessibility of this domain in the glycoprotein makes it possible to label the PtaAGP6 epitopes on the cell surface or in the cell wall with polyclonal antibodies raised against this subdomain. The antibodies recognize the peptide of the basic subdomain and bind to the intact protein molecule. A soluble protein-containing fraction was purified from the differentiating xylem of pine trees by using -glucosyl Yariv reagent (-glcY) and was recognized by antibodies against the basic subdomain. Immunolocalization studies showed that the PtaAGP6 epitopes are restricted to a file of cells that just precede secondary cell wall thickening, suggesting roles in xylem differentiation and wood formation. The location of apparent labeling of the PtaAGP6 epitopes is separated from the location of lignin deposition. Multiple single nucleotide polymorphisms (SNPs) were detected in EST variants. Denaturing HPLC analysis of PCR products suggests that PtaAGP6 is encoded by a single gene. Mobility variation in denaturing gel electrophoresis was used to map PtaAGP6 SNPs to a site on linkage group 5. 相似文献
17.
18.
Routaboul JM Kerhoas L Debeaujon I Pourcel L Caboche M Einhorn J Lepiniec L 《Planta》2006,224(1):96-107
Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during seed development and maturation in wild types and mutants. Wild type seed contained more than 26 different flavonoids belonging to flavonols (mono and diglycosylated quercetin, kaempferol and isorhamnetin derivatives) and flavan-3-ols (epicatechin monomers and soluble procyanidin polymers with degrees of polymerization up to 9). Most of them are described for the first time in Arabidopsis. Interestingly, a novel group of four biflavonols that are dimers of quercetin-rhamnoside was also detected. Quercetin-3-O-rhamnoside (the major flavonoid), biflavonols, epicatechin and procyanidins accumulated in the seed coat in contrast to diglycosylated flavonols that were essentially observed in the embryo. Epicatechin, procyanidins and an additional quercetin-rhamnoside-hexoside derivative were synthesized in large quantities during seed development, whereas quercetin-3-O-rhamnoside displayed two peaks of accumulation. Finally, 11 mutants affected in known structural or regulatory functions of the pathway and their three corresponding wild types were also studied. Flavonoid profiles of the mutants were consistent with previous predictions based on genetic and molecular data. In addition, they also revealed the presence of new products in seed and underlined the plasticity of this metabolic pathway in the mutants. 相似文献
19.
Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana 总被引:22,自引:0,他引:22
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms. 相似文献
20.
Felicity Z. Watts Neil Butt Philip Layfield Jesse Machuka Julian F. Burke Anthony L. Moore 《Plant molecular biology》1994,26(1):445-451
An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants displey GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination. 相似文献