首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anl-amino-acid oxidase (EC 1.4.3.1) that catalyzes the oxidative deamination of twelvel-amino acids has been purified 21-fold and with 14% yield to electrophoretic homogeneity fromChlamydomonas reinhardtii cells by ammonium-sulfate fractionation, gel filtration through Sephacryl and Superose, anion-exchange chromatography and preparative electrophoresis in polyacrylamide gels. The native enzyme is a protein of 470 kDa and consists of eight identical or similarsized subunits of 60 kDa each. Optimum pH and temperature were 8.2 and 55° C, respectively, with a Q10 (45–55° C) of 1.7 and an activation energy of 45 kJ · mol–1. Its absorption spectrum showed, in the visible region, maxima at 360 and 444 nm, characteristic of a flavoprotein with a calculated flavin content of 7.7 mol FAD per mol of native enzyme. ApparentK m values of the twelvel-amino acids which can act as substrates ofl-amino-acid oxidase ranged between 31 M for phenylalanine and 176 M for methionine. The effect of several specific group reagents, chelating agents and bivalent cations on enzyme activity has also been studied.This work was supported by Grant 780-CO2-01 from CICYT, Spain. The skillful secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.  相似文献   

2.
The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and d-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from a cDNA library. The xylose isomerase gene sequence is the first gene of this type reported for a fungus. Northern blot analysis revealed a correlation between mRNA and enzyme activity levels on different growth substrates. Furthermore, the molecular mass calculated from the gene sequence was confirmed by gel permeation chromatography of crude extracts followed by activity measurements. Deduced amino acid sequences of both genes were used for phylogenetic analysis. The xylose isomerases can be divided into two distinct clusters. The Piromyces sp. strain E2 enzyme falls into the cluster comprising plant enzymes and enzymes from bacteria with a low G+C content in their DNA. The d-xylulokinase of Piromyces sp. strain E2 clusters with the bacterial d-xylulokinases. The xylose isomerase gene was expressed in the yeast Saccharomyces cerevisiae, resulting in a low activity (25±13 nmol min–1mg protein-1). These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.  相似文献   

3.
Urease (EC 3.5.1.5) catalyses the hydrolysis of urea to ammonia and carbon dioxide. The enzyme fromSporobolomyces roseus was enriched 780-fold and purified to apparent homogeneity using heat treatment, ion exchange chromatography on Q-Sepharose fast flow, hydrophobic interaction chromatography on Phenyl-Sepharose, size exclusion chromatography on Sephacryl S 300 HR, and ion exchange chromatography on MonoQ. Analysis of the purified enzyme by SDS-PAGE demonstrated the presence of subunits with a molecular weight of 90 (± 4) kDa. The M r of the native enzyme was estimated by size exclusion chromatography to be 340 (± 30) kDa, suggesting a tetrameric structure different from other ureases isolated so far from both prokaryotes and eukaryotes. The enzyme was heat-stable, showing no loss of activity after incubation at 70 °C for 15 min. The highest urease activities were observed after growth on media containing urea as the sole source of nitrogen.  相似文献   

4.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

5.
Tobacco (N. tabacum cv. Xanthi) cell lines contained two forms of anthranilate synthase (AS; EC 4.1.3.27) which could be partially separated by gel-filtration chromatography. One form was resistant to feedback inihibition by 10 M tryptophan (trp) while the other form was almost completely inhibited by trp at the same concentration. Cell lines selected as resistant to 5-methyltryptophan (5MT) had more of the trp-resistant AS form. Only the trp-sensitive form was detected in plants regenerated from both normal and 5MT-resistant cell lines. Overexpression of the trp-resistant form in 5MT-resistant tobacco cells disappeared during plant regeneration but reappeared when callus was initiated from the leaves of these plants. The trp-sensitive form was localized in the particulate fraction and the trp-resistant form in the cytosol of tobacco cultured cell protoplasts. The trp-resistant form of AS from tobacco had an estimated MW of 200 000, determined by Sephacryl S-200 chromatography, compared to an estimated MW of 150 000 for the trp-sensitive form. The estimated molecular weights of AS from carrot and corn were 160 000 and 150 000, respectively. Analysis of AS activity from the diploid Nicotiana species Nicotiana otophora (chromosome number 2n=24) by high-performance liquid chromatography showed two activity peaks identical in elution time and trp inhibition characteristics to the activity from N. tabacum (chromosome No. 48). Thus the two enzyme forms found in tobacco did not appear to have originated individually from the progenitor species genomes which combined to make up the tobacco genome.Abbreviations AS anthranilate synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - HPLC high-performance liquid chromatography - 5MT D1-5-methyltryptophan - trp L-tryptophan  相似文献   

6.
Bacterial strains capable of converting glycerol to glyceric acid (GA) were screened among the genera Acetobacter and Gluconacetobacter. Most of the tested Acetobacter and Gluconacetobacter strains could produce 1.8 to 9.3 g/l GA from 10% (v/v) glycerol when intact cells were used as the enzyme source. Acetobacter tropicalis NBRC16470 was the best GA producer and was therefore further investigated. Based on the results of high-performance liquid chromatography analysis and specific rotation, the enantiomeric composition of the produced GA was d-glyceric acid (d-GA). The productivity of d-GA was enhanced with the addition of both 15% (v/v) glycerol and 20 g/l yeast extract. Under these optimized conditions, A. tropicalis NBRC16470 produced 22.7 g/l d-GA from 200 g/l glycerol during 4 days of incubation in a jar fermentor.  相似文献   

7.
O-Methylthreonine (OMT) inhibits the growth of plated Rosa cells (ID506·10-6M). Isoleucine is able to reverse efficiently and specifically this OMT toxicity. From OMT-resistant colonies occurring at a frequency of 1.58·10-7 variants per cell plated at 10-4M OMT, the variant strains OMTR-1 and OMTR-2 were isolated, cloned via protoplasts and characterized. Both variants were ten times more resistant to OMT than the wildtype and were cross-resistant to another isoleucine analog, dl-4-thiaisoleucine. The resistant variants retained their resistance after storage for three years in liquid nitrogen. Both resistant strains were stable for several months when subcultured in the absence of OMT although it was shown in a reconstitution experiment that wildtype cells overgrow OMTR-2 variant cells if co-cultivated for many passages in drug-free medium. One case of instability was observed upon long-term subculturing in drug-free medium: the strain OMTR-1D* partially lost phenotypic properties. Resistance to OMT was followed qualitatively by a new method based on inhibition-zone formation in cell suspensions plated in agar medium. The OMT-resistant variants showed a reduction in sensitivity of the enzyme l-threonine deaminase to feedback inhibition by isoleucine, a decreased stability of l-threonine deaminase when stored at-18°C or incubated at +55°C and a two- to threefold increase of the free isoleucine pool within the cells. The genetical events and the biochemical mechanisms which might lead to the observed stable and biochemically defined character are discussed with particular reference to the high ploidy level of the Rosa cell line.Abbreviations OMT l-O-methylthreonine - TD l-threonine deaminase  相似文献   

8.
A strategy, termed alanine-scanning mutagenesis, was used to identify the amino acid residues which are critical to the antigenicity of Escherichia coli l-asparaginase (l-ASP). Three continuous alkaline residues, 195RKH197, were mutated to Ala selectively. Four mutant recombinant l-ASPs were constructed and expressed in E. coli, and then purified. The purified mutants showed a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were more than 95% pure by reverse high-perfomance liquid chromatography. The activities of wild-type and m l-ASPs in the fermentative medium were all about 130 U/mL. The change from 195RKH 197 to 195AAA 197 reduced the antigenicity ofhe enzyme greatly as shown in competition enzyme-linked immunosorbent assay using polyclonal antibodies raised against the wild-type l-ASP from rabbits. The results show that residues 195RKH197 of E. coli l-ASP are critical to its antigenicity. These authors contributed equally to this work.  相似文献   

9.
Cell-free extracts of d-fructose grown cells of marine species of Alcaligenes as well as Pseudomonas marina contained an activity which catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose in the 1-position as well as activities of the following enzymes: 1-P-fructokinase, fructose-1,6-P2 aldolase, PPi-dependent 6-P-fructokinase, fructokinase, glucokinase, P-hexose isomerase, glucose-6-P dehydrogenase, 6-P-gluconate dehydrase, and 2-keto-3-deoxy-6-P-gluconate aldolase. The presence of these enzyme activities would allow d-fructose to be degraded by the Embden-Meyerhof pathway and/or the Entner-Doudoroff pathway. In cell-free extracts of d-glucose grown cells, the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose as well as 1-P-fructokinase activity were reduced or absent while the remaining enzymes were present at levels similar to those found in d-fructose grown cells. Radiolabeling experiments suggested that both d-fructose and d-glucose were utilized primarily via the Entner-Doudoroff pathway. Alteromonas communis, a marine species lacking 1-P-fructokinase and the PPi-dependent 6-P-fructokinase, contained all the enzyme activities necessary for the catabolism of d-fructose and d-glucose by the Entner-Doudoroff pathway; the involvement of this pathway was also consistent with the results of the radiolabeling experiments.Non-Standard Abbreviations EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTS PEP: d-fructose phosphotransferase system - PPi-6-PFK PPi dependent 6-PFK - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

10.
Putrescine-N-methyltransferase (PMT; EC 2.1.1.53), the first enzyme in the biosynthetic pathway leading from putrescine to tropane and pyrrolidine alkaloids, has been purified about 700-fold from root cultures of Datura stramonium established following genetic transformation with Agrabacterium rhizogenes. The native enzyme had a molecular weight estimated by gel-permeation chromatography on Superose-6 of 40 kDa; sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the peak fractions from Superose-6 chromatography revealed a band of 36 kDa molecular weight. Kinetic studies of the purified enzyme gave K m values for putrescine and S-adenosyl-l-methionine of 0.31 mM and 0.10 mM, respectively, and K i values for S-adenosyl-l-homocysteine and N-methylputrescine of 0.01 mM and 0.15 mM, respectively. The enzyme was active with some derivatives and analogous of putrescine, including 1,4-diamino-2-hydroxybutane and 1,4-diamino-trans-but-2-ene. Little activity was observed with 1,4-diamino-cis-but-2-ene and none with 1,3-diaminopropane or 1,5-diaminopentane (cadaverine), indicating a requirement for substrate activity of two amino groups in a trans conformation, separated by four carbon atoms. A large number of monoamines were inhibitors of the enzyme. Though not a substrate, cadaverine was a competitive inhibitor of the enzyme, with a K i of 0.04 mM; the significance of this in relation to the biosynthesis of cadaverine-derived alkaloids is discussed.Abbreviations PEG polyethylene glycol - PMT putrescine-N-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We are grateful to C.R. Waspe, M.G. Hilton and P.D.G. Wilson for assistance with the provision of roots from fermenters. We thank W. Martin and S.D. Barr, Chemistry Department, University of Glasgow, and T.A. Smith, Long Ashton Research Station, Bristol, for the supply of compounds not commercially available, as indicated in the text. For helpful discussion and comment, we are grateful to A.J. Parr, W.R. McLauchlan and P. Bachmann. H.D.B, thanks the Science and Engineering Research Council for a research studentship and the Agricultural and Food Research Council Institute of Food Research for additional support.  相似文献   

11.
The complete genome sequence of Bacillus subtilis reveals that sequences encoding several hemicellulases are co-localised with a gene (xynD) encoding a putative family 43 glycoside hydrolase that has not yet been characterised. In this work, xynD has been isolated from genomic DNA of B. subtilis subsp. subtilis ATCC 6051 and cloned for cytoplasmatic expression in Escherichia coli. Recombinant XynD (rXynD) was purified using ion-exchange chromatography and gel permeation chromatography. The enzyme had a molecular mass of approximately 52 kDa, a pI above 9.0 and releases α-l-arabinose from arabinoxylo-oligosaccharides as well as arabinoxylan polymers with varying degree of substitution. Using para-nitrophenyl-α-l-arabinofuranoside as substrate, maximum activity was observed at pH 5.6 and 45°C. The enzyme retained its activity over a large pH range, while activity was lost after pre-incubation above 50°C. Gas–liquid chromatography and proton nuclear magnetic resonance spectrometry analysis indicated that rXynD specifically releases arabinofuranosyl groups from mono-substituted C-(O)-2 and C-(O)-3 xylopyranosyl residues on the xylan backbone. As rXynD did not display endoxylanase, xylosidase or arabinanase activity and was inactive on arabinan, we conclude that this enzyme is best described as an arabinoxylan arabinofuranohydrolase.  相似文献   

12.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

13.
The l-rhamnose isomerase gene (L -rhi) encoding for l-rhamnose isomerase (l-RhI) from Bacillus pallidus Y25, a facultative thermophilic bacterium, was cloned and overexpressed in Escherichia coli with a cooperation of the 6×His sequence at a C-terminal of the protein. The open reading frame of L -rhi consisted of 1,236 nucleotides encoding 412 amino acid residues with a calculated molecular mass of 47,636 Da, showing a good agreement with the native enzyme. Mass-produced l-RhI was achieved in a large quantity (470 mg/l broth) as a soluble protein. The recombinant enzyme was purified to homogeneity by a single step purification using a Ni-NTA affinity column chromatography. The purified recombinant l-RhI exhibited maximum activity at 65°C (pH 7.0) under assay conditions, while 90% of the initial enzyme activity could be retained after incubation at 60°C for 60 min. The apparent affinity (K m) and catalytic efficiency (k cat/K m) for l-rhamnose (at 65°C) were 4.89 mM and 8.36 × 105 M−1 min−1, respectively. The enzyme demonstrated relatively low levels of amino acid sequence similarity (42 and 12%), higher thermostability, and different substrate specificity to those of E. coli and Pseudomonas stutzeri, respectively. The enzyme has a good catalyzing activity at 50°C, for d-allose, l-mannose, d-ribulose, and l-talose from d-psicose, l-fructose, d-ribose and l-tagatose with a conversion yield of 35, 25, 16 and 10%, respectively, without a contamination of by-products. These findings indicated that the recombinant l-RhI from B. pallidus is appropriate for use as a new source of rare sugar producing enzyme on a mass scale production.  相似文献   

14.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

15.
Summary A membrane-boundd(–)-lactate dehydrogenase (LDH), an important enzyme in carbon and energy metabolism in sulfate-reducing bacteria of the genusDesulfovibrio, was solubilized from the membrane fraction ofDesulfovibrio desulfuricans (ATCC 7757). The enzyme was purified 84-fold to a final specific activity of 525 nmol DCPIP-reduced/min/mg protein by ammonium sulfate precipitation, chloroform extraction, gel filtration with Sephadex G-150, and hydrophobic column chromatography withN-octylamine Sepharose 4B. The enzyme eluted off a Sephacryl S-300 column as a single peak with a molecular weight of 400 000±40 000 Da. Denaturing gel electrophoresis showed it to be composed of 5 protein bands. The oxidized and dithionite reduced spectra of LDH resembles the spectra ofc-type cytochromes found inDesulfovibrio species. The addition of lactate to LDH resulted in a partially reduced spectrum. The flavin/cytochromec/non-heme iron content per 400 000 Da LDH molecular weight was found to be 11.64.5. The LDH activity was specific ford(–)-lactate and had aK m ford(–)-lactate of 4.3×10–4 M. The pH optimum was between 6.5 and 8.5.  相似文献   

16.
Emodin O-methyltransferase, an enzyme catalyzing methylation of the 8-hydroxy group of emodin, was identified in the mould Aspergillus terreus IMI 16043, a (+)-geodin producing strain. The enzyme catalyzed the formation of questin from emodin and S-adenosyl-l-methionine. By chromatography on DEAE-cellulose, Phenyl Sepharose, Q-Sepharose, Hydroxyapatite, and CM-cellulose, emodin O-methyltransferase was purified to apparent homogeneity. The purified protein had a molecular weight of 322 kDa as estimated by gel filtration and 53.6 kDa as estimated by gel electrophoresis under denaturing conditions, suggesting that the active enzyme was a homohexamer. The enzyme showed pI 4.4 and optimum pH 7–8. Magnesium ion or manganese ion was not an absolute requirement, nor increased the enzyme activity. The enzyme had strict substrate specificity and very low Km values for both emodin (3.4×10-7 M) and S-adenosyl-l-methionine (4.1×10-6 M).Abbreviations EOMT emodin O-methyltransferase from A. terreus - SAM S-adenosyl-l-methionine - PAGE polyacrylamide gel electrophoresis  相似文献   

17.
Summary A d-hydantoinase was expressed in the soluble form by a recombinant E. coli strain, pE-HDT/E. coli BL21 in LB medium. The enzymatic activity of cultured cells reached 5.2–6.5 IU/ml culture at a cell turbidity of 10 at 600 nm. The expressed enzyme was efficiently purified by three steps, ammonium sulfate fractionation, Phenyl-Sepharose hydrophobic interaction chromatography and Sephacryl S-200 size-exclusion chromatography. With the above purification process, the enzyme was purified to more than 95% purity as estimated by SDS-PAGE. The overall recovery of enzymatic activity was 54.4% and the specific activity for substrate dl-hydantoin achieved 48 U/mg. The purified enzyme appeared as a dimer with a molecular mass of 103 kDa, as measured by size-exclusion chromatography. The enzyme was stable from pH 6 to 12 with an optimum pH at 9.5 The optimum temperature of the enzyme was 45 °C and it activity was rapidly lost over 55 °C. Divalent metal ions, including Co2+, Mn2+ and Ni 2+ ions obviously enhanced the enzymatic activity, while Zn2+ ion had a slight inhibitory effect. In addition, the dissociation of purified enzyme into its subunits occurred in the presence of 1 mM Zn2+ ion. The effect of different metal ions on the d-hydantoinase activation/attenuation was discussed.  相似文献   

18.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

19.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

20.
Cell-free extracts of d-fructose grown cells of Pseudomonas putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. mendocina, P. acidovorans and P. maltophila catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose and contained 1-P-fructokinase activity suggesting that in these species fructuse-1-P and fructose-1,6-P2 were intermediates of d-fructose catabolism. Neither the 1-P-fructokinase nor the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose was present in significant amounts in succinate-grown cells indicating that both activities were inducible. Cell-free extracts also contained activities of fructose-1,6-P2 aldolase, fructose-1,6-P2 phosphatase, and P-hexose isomerase which could convert fructose-1,6-P2 to intermediates of either the Embden-Meyerhof pathway or Entner-Doudoroff pathway. Radiolabeling experiments with 1-14C-d-fructose suggested that in P. putida, P. aeruginosa, P. stutzeri, and P. acidovorans most of the alanine was made via the Entner-Doudoroff pathway with a minor portion being made via the Embden-meyerhof pathway. An edd - mutant of P. putida which lacked a functional Entner-Doudoroff pathway but was able to grow on d-fructose appeared to make alanine solely via the Embden-Meyerhof pathway.Non-Standard Abbreviations cpm counts per min - edd - mutant lacking Entner-Doudoroff dehydrase (6-PGA dehydrase) - EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTs PEP: d-fructose phosphotransferase system - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号