首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified from chemolithotrophically grown Rhizobium japonicum SR and ribulose-5-phosphate kinase activity has also been detected in extracts of such cells. Electrophoretically homogeneous ribulosebisphosphate carboxylase/oxygenase purified in the presence of PMSF showed two types of large subunits of 55 000 and 53 000 daltons and small subunits of 14 200 daltons. The heterogeneity of large subunits was not observed when the enzyme was prepared in the presence of PMSF and DIFP. Ribulose-1,5-bisphosphate carboxylase from R. japonicum was inhibited by antibodies to this enzyme and a single precipitin band from the antibody-enzyme interaction was observed on double diffusion plates. Antibodies to R. japonicum enzyme did not cross-react on immunodiffusion plates with the ribulosebisphosphate carboxylase/oxygenases from wheat, spinach, soybean and tobacco.  相似文献   

2.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

3.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from parsley leaves was purified by Sepharose 6B gel filtration at pH 8.3 as a single, colorless peak containing both activities. Approximately 0.2 g atom copper per mole enzyme was detected by atomic absorption spectroscopy, but this copper was not detectable by EPR spectrometry.  相似文献   

4.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 1.1.39) (RuBPCase) was quantified using polyacrylamide-gel electrophoresis in whole 9-d-old first leaves of 14 genotypes of Triticum, and cellular RuBPCase levels calculated. Diploids, tetraploids and hexaploids were analysed and it was confirmed that the RuBPCase level per cell is closely related to ploidy in wheat. Inter-genotypic variation in RuBPCase levels per cell and per leaf were surveyed. It was found that the interactions between leaf size, cell size and RuBPCase levels result in small variations in RuBPCase levels per unit leaf area between genotypes.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

5.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach was inactivated by a carboxyl-directed reagent, Woodward's reagent K ( WRK ). The inactivation followed pseudo-first-order kinetics. The reaction order with respect to inactivation by WRK was 1.1, suggesting that inactivation was the consequence of modifying a single residue per active site. The substrate ribulose 1,5-bisphosphate (RBP), two competitive inhibitors, fructose 1,6-bisphosphate (FBP) and sedoheptulose 1,7-bisphosphate (SBP), and a number of sugars-phosphate protected against inactivation by WRK . SBP was a strong protector, displaying a dissociation constant (Kd) of 3 microM with native RBP carboxylase. Pretreatment of RBP carboxylase with diethyl pyrocarbonate prevented WRK incorporation into the enzyme. The enol ester derivative produced by reaction of WRK with RBP carboxylase has a maximal absorbance at 346 nm, and the extinction coefficient was found to be 12300 +/- 700 M-1 cm-1. Spectrophotometric titration of the number of carboxyl groups modified by WRK in RBP carboxylase/oxygenase in the presence and in the absence of SBP suggests that inactivation was associated with the modification of one carboxyl group per active site.  相似文献   

6.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Rhodospirillum rubrum has been crystallized in a form that is suitable for structural studies by x-ray diffraction. The asymmetric unit of the crystal contains one dimeric enzyme molecule of molecular mass 101,000 Da. The enzyme was activated prior to crystallization and is presumed to be in the CO2-activated state in the crystal. The method of hydrophobicity correlation has been used to compare the amino acid sequence of this molecule (466 residues) to that of the large subunit of a higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (477 residues in Nicotiana tabacum). The pattern of residue hydrophobicities is similar along the two polypeptides. This suggests that the three-dimensional folding of the large polypeptide chains may be similar in plant and bacterial enzymes. If this is so, knowing the structure of either the plant or bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase should aid in learning the structure of the other.  相似文献   

7.
Photosynthetic Activity of Ripening Tomato Fruit   总被引:4,自引:0,他引:4  
Carrara  S.  Pardossi  A.  Soldatini  G.F.  Tognoni  F.  Guidi  L. 《Photosynthetica》2001,39(1):75-78
Gas exchanges, chlorophyll (Chl) a fluorescence and carboxylation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) were determined in tomato (Lycopersicon esculentum Mill.) fruits picked at different developmental stages (immature, red-turning, mature, and over-ripe). The fruits did not show signs of CO2 fixation. However, photochemical activity was detectable and an effective electron transport was observed, the values of Chl fluorescence parameters in green fruits being similar to those determined in the leaves. The RuBPCO activity, which was similar to those recorded in the leaves at the immature stage of the fruit, decreased as the fruit ripened. PEPC activity was always higher than RuBPCO activity.  相似文献   

8.
During maturation and ripening of tomato (Lycopersicon esculentum, cv Tamar) fruits, there are differential changes in the steady state levels of chloroplast proteins. Western blot analysis indicated that with the exception of the core polypeptide of photosystem I (PSI) (subunit I) the whole complex disappears during the transition of chloroplast to chromoplast. The amounts of the core polypeptide of photosystem II (PSII) (43 kilodaltons) and the light harvesting chlorophyll protein complex increase during maturation and decrease thereafter. In contrast, the 33 kilodalton subunit of PSII is found at the highest levels from the early recorded stages and decreases gradually until late stages of ripening. The level of cytochrome f decreases slowly during the maturation and ripening process, whereas the Rieske protein of the same complex disappears at a faster rate. There are also differential changes in the subunits of the chloroplast coupling factor·ATPase complex; α and β subunits increase during maturation, whereas the level of the γ subunit is already maximal at the earliest recorded stage of development and depleted thereafter. The two subunits of the ribulose-1,5 bisphosphate carboxylase increase in abundance during chloroplast maturation and gradually disappear after the transition from chloroplast to chromoplast. However, there are substantial differences in the rates of increase and disappearance of the large and small subunits of this enzyme. This imbalance is attributed to different regulation of nuclear and chloroplast gene expression. In addition, the steady state levels of chloroplastic superoxide dismutase and phosphoenolpyruvate carboxylase have been followed. Both enzymes reach their maxima at the final stages of ripening. This increase coincides with the climacteric rise of CO2 release.  相似文献   

9.
The growth characteristics of some plums and their component parts have been previously studied, as have some aspects of their developmental anatomy and composition. However, little is known about either their metabolism or about the interactions between the metabolism of their component parts. In this study we investigated these aspects in the Japanese plum Ozark Premier. Throughout fruit and seed development, changes in sugar and organic acid contents, protein composition and abundance of selected enzymes were determined. In the stone, there was a transient accumulation of vegetative storage proteins. These were subsequently mobilized and this coincided with the onset of the lignification of the stone and the start of storage protein accumulation in the seed. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was present in the seeds, even though they lacked chlorophyll, and its presence may be related to limited gas exchange. In the flesh of some fruits, phosphoenolpyruvate carboxykinase (PEPCK) and NADP malic enzyme (NADP-ME) are thought to function in the dissimilation of malate and/or citrate during ripening. However, PEPCK and NADP-ME were present in plum flesh for most of its development, although there was no net dissimilation of malate until the latter stages of ripening. There is an interaction between the developing seed and endocarp with respect to the utilization of imported sugars and amino acids. An hypothesis is presented to account for the presence of PEPCK and NADP-ME enzyme in plum flesh when there was no net dissimilation of organic acids.  相似文献   

10.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was modified with pyridoxal 5'-phosphate and then reduced with sodium borohydride. Both carboxylase and oxygenase activities were lost when one molecule of pyridoxal 5'-phosphate was bound per enzyme dimer. Peptide maps of modified enzyme showed one N6-(phosphopyridoxal)lysine-containing peptide. This peptide was isolated by gel filtration and cation-exchange chromatography and its sequence determined as Ala-Leu-Gly-Arg-Pro-Glu-Val-Asp-(PLP-Lys)-Gly-Thr-Leu-Val-Ile-Lys. Since activation of the enzyme with Mg2+/CO2 enhances pyridoxal 5'-phosphate modification and subsequent inactivation and the substrate ribulose bisphosphate protects against modification, the modified lysyl group is most certainly at the catalytic site and not at the activation site of the enzyme.  相似文献   

11.
Alternative oxidase (AOX) and uncoupling protein (UCP) are present simultaneously in tomato fruit mitochondria. In a previous work, it has been shown that protein expression and activity of these two energy-dissipating systems exhibit large variations during tomato fruit development and ripening on the vine. It has been suggested that AOX and UCP could be responsible for the respiration increase at the end of ripening and that the cytochrome pathway could be implicated in the climacteric respiratory burst before the onset of ripening. In this study, the use of tomato mutants that fail normal ripening because of deficiencies in ethylene perception or production as well as the treatment of one selected mutant with a chemical precursor of ethylene have revealed that the bioenergetics of tomato fruit development and ripening is under the control of this plant hormone. Indeed, the evolution pattern of bioenergetic features changes with the type of mutation and with the introduction of ethylene into an ethylene-synthesis-deficient tomato fruit mutant during its induced ripening.  相似文献   

12.
Structure and function of Rubisco   总被引:8,自引:0,他引:8  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating CO(2) into the biosphere. At the same time Rubisco is an extremely inefficient catalyst and its carboxylase activity is compromised by an opposing oxygenase activity involving atmospheric O(2). The shortcomings of Rubisco have implications for crop yield, nitrogen and water usage, and for the global carbon cycle. Numerous high-resolution crystal structures of different forms of Rubisco are now available, including structures of mutant enzymes. This review uses the information provided in these structures in a structure-based sequence alignment and discusses Rubisco function in the context of structural variations at all levels--amino acid sequence, fold, tertiary and quaternary structure--with an evolutionary perspective and an emphasis on the structural features of the enzyme that may determine its function as a carboxylase.  相似文献   

13.
Ribulose-1,5-bisphosphate carboxylase/oxygelase (RuBPCase) was studied in melon leaves infected by Colletotrichum lagenarium, a fungal pathogen of melons. Electrophoretic analysis of melon leaf proteins indicated a strong effect of infection on RuBPCase, the subunits of which gradually disappeared during the different stages of infection. Enzyme activity also declined 4 d after inoculation and its content, measured by immunoelectrophoresis, decreased to a similar extent. Synthesis of the large and small subunits of RuBPCase was followed by in-vivo pulse-labeling experiments. A drastic decrease in the rate of RuBPCase-subunit synthesis occurred 3 d after inoculation and preceded the appearance of disease symptoms. There was an apparent coordination of the synthesis of the two subunits under these conditions.Abbreviations LS (SS) Large (small) subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

14.
15.
Tomato fruit (Lycopersicum esculentum Mill) from green, pink, and red stages were assayed for changes in the activity of ribulose diphosphate carboxylase and oxygenase, phosphoenolpyruvate carboxylase, changes in the levels of glycolate and respiratory gas exchange. The ribulose diphosphate carboxylase activity decreased as the fruit ripened. By comparison, the ribulose diphosphate oxygenase activity increased during the transition from the green to the pink stage, and declined afterward. The changes in the endogenous glycolate levels and the respiratory gas exchange, as observed at different stages of ripening, resembled the changes in the ribulose diphosphate oxygenase activity. The utilization of glycolate in further metabolic activity may result in the formation of peroxidases required for the onset of ripening.  相似文献   

16.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme assimilating CO2 in biology. Despite serious efforts, using many different methods, a detailed understanding of activity and regulation in Rubisco still eludes us. New results in X-ray crystallography may provide a structural framework on which to base experimental approaches for more detailed analyses of the function of Rubisco at the molecular level. This article gives a critical review of the field and summarizes recent results from structural studies of Rubisco.  相似文献   

17.
The susceptibility of the chloroplastic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase to proteolysis by trypsin, chymotrypsin, proteinase K, and papain is enhanced by oxidative treatments including spontaneous oxidation of cysteines. Proteinases exhibit a high specificity for the oxidized inactive form of the carboxylase, cleaving its large subunit. Treatment of the inactive enzyme with dithiothreitol results in partial recovery of both carboxylase activity and resistance to proteolysis. This behavior may explain the specific degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase that occurs in vivo during leaf senescence.  相似文献   

18.
Ribulose-1,5-diphosphate oxygenase is shown to be an enzyme different from ribulose-1,5-diphosphate carboxylase. The enzymes can be separated from each other by a preparation method employing gel filtration at a pH of 8.3 which is higher than that previously used. The oxygenase activity is correlated with a blue color and a characteristic Cu EPR signal. This indicates that the oxygenase is a copper-containing enzyme.  相似文献   

19.
核酮糖-1,5-二磷酸(RuBP)羧化酶/加氧酶(RubisCO)是Calvin循环中的关键酶,也是地球上最丰富的酶,广泛地存在于一些原核生物、真核生物以及高等植物中.对原核生物RubisCO的结构、活化、动力学性质、基因结构表达与调节、基因工程等方面的最新进展作一综述.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号