首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
《生命科学研究》2016,(1):57-62
Wg/Wnt信号参与调控多种组织的发育,尤其在心脏发育和心脏衰老过程中发挥重要的作用。pygo作为Wnt信号途径的一个新成员,可能依赖于Wnt信号调控心脏发育,而最新发现pygo敲低品系引起的成体心脏功能缺陷与Wnt信号缺失在心脏中的表型具有显著性差异,表明pygo调控成体心脏功能不依赖于经典Wnt信号,可能存在新的调控机制。主要对pygo基因在调控心脏发育和心脏衰老中的功能以及在果蝇和哺乳动物中pygo基因调控心脏功能分子机制的研究进展进行了综述。虽然pygo不依赖经典Wnt信号在成体心脏中发挥作用,但显性负抑制TCF突变体引起严重的成体心脏生理功能缺陷,与pygo表型一致,暗示着pygo可能依赖与TCF类似因子相互作用发挥功能。其次,pygo能跨越TCF或Lgs直接与Wnt信号靶基因相互作用。此外,Pygo蛋白能与Lgs相互作用形成Pygo-BCL9/Lgs-H3K4me复合物调节Wnt信号靶基因,且甲基转移酶HMT核心组件WDR5与Pygo蛋白的相互作用能促进PHD结构域与H3K4的结合,表明pygo调节成体心脏功能与表观遗传学修饰也具有一定的相关性。  相似文献   

3.
Wnt蛋白是一类分泌型糖蛋白家族,Wnt信号蛋白与细胞表面的多种受体相互作用,参与诸多生命过程。对神经系统发育的研究表明,Wnt信号通路在神经发生,神经祖细胞增值、分化,神经干细胞的自我更新,轴突导向等过程中起重要调控作用。多项研究已经证实,Wnt通路失调与诸多神经系统疾病有密切关系。Wnt信号通路的突变或异常,将会引起神经系统发育缺陷。然而,对Wnt非经典信号通路的研究,尤其是新受体Ryk的调控作用的认识迄今仍不全面。根据国内外相关研究,阐述了经典Wnt信号通路Wnt/β-catenin途径的同时也对Wnt/Ryk非经典信号途径这一研究新领域做了讨论。在非经典信号通路中,Ryk-ICD的剪接对于前体细胞的神经分化起重要作用。本文分析了Wnt/β-catenin和Wnt/Ryk信号通路在神经发育中的作用,有助于深入理解神经发育过程中Wnt信号通路的作用机制。然而,Ryk-ICD引导因子、分子机制等问题仍待进一步研究,而这将有利于理解神经干细胞分化机理。  相似文献   

4.
Wnt(wingless-type MMTV integration site family members)信号通路与细胞的发育分化密切相关,尤其对动物胚胎期中枢神经系统的发育至关重要。在眼的早期发育中,视泡背部视网膜色素上皮细胞(RPE)Wnt/βcatenin信号通路高度活跃,对神经视网膜及RPE的发育调控起重要作用。本文结合目前该领域研究进展,综合评述Wnt信号通路、Wnt蛋白家族以及Wnt信号通路与RPE发育的关系。  相似文献   

5.
Wnt基因超家族编码一系列分泌型糖蛋白,由Wnt蛋白介导的Wnt信号通路是一个进化上高度保守的信号通路,在胚胎发育、细胞生长、干细胞增殖中发挥重要的作用.此外研究发现Wnt通路在癌症发生发展中也起着重要作用.Wnt信号配体-Frizzled受体,由Frizzled基因编码,属于7次跨膜蛋白受体家族,与G蛋白偶联受体的结构相似,目前研究发现,从无脊椎动物到脊椎动物至少有10个家族成员,其在心血管系统和其他器官系统中广泛表达.基于这些研究基础,本文将重点阐述Frizzled受体蛋白与疾病的可能或潜在的关系.由于Frizzled受体蛋白在疾病当中发挥了重要作用,并且在癌症中起着分子靶点的作用,我们有理由相信,Frizzled受体将成为一个有效的肿瘤治疗的分子靶点.  相似文献   

6.
Wnt信号通路在脊椎动物的胚胎发育过程中发挥重要作用. Dkk1(Dickkopf1)是Dkk基因家族的成员之一,通过编码一种分泌型的糖蛋白与Wnt信号蛋白竞争细胞表面受体,来维持Wnt信号通路的稳态,从而调控胚胎器官的正常发育. 同时,在人类成体中,Dkk1基因活性的改变与肿瘤、代谢性骨病和骨关节炎等疾病的发生密切相关. 本文对Dkk1在头部、肢、眼和牙齿等器官的胚胎发育过程中的相关分子调控机制以及Dkk1与肿瘤发生的关系进行综述.  相似文献   

7.
Wnt11为Wnt家族的成员,是参与Wnt信号途径调控的转录因子,对心脏的正常发育起着非常重要的作用.根据已报道的Wnt11基因序列,通过RT-PCR从斑马鱼心脏组织中得到Wnt11部分编码区序列,将其连接到pGEX-4T-1原核表达载体上.经酶切及测序鉴定后,质粒构建成功,将重组质粒(pGEX-4T-Wnt11)转化E.coli BL2l,通过IPTG诱导表达出融合蛋白,采用谷胱甘肽琼脂糖珠亲和纯化.将纯化的融合蛋白免疫新西兰大白兔制备多克隆抗体,并用Western Blot检测抗体的效价和特异性.结果显示,获得了Wnt11原核表达重组融合蛋白及高效价的特异性兔抗Wnt11多克隆抗体,为Wnt11功能的进一步研究奠定了基础.  相似文献   

8.
Wnt信号通路是一种哺乳动物进化保守的信号通路,在心脏发育和干细胞向心肌细胞分化中发挥重要的调控作用。经典Wnt信号通路主要调控早期心肌谱系提交,而非经典Wnt信号通路参与调控后续的心脏发育和分化。本文对非经典Wnt信号通路在心脏发育和干细胞向心肌细胞分化中的作用及其机制作一综述,以期为干细胞移植治疗缺血性心肌病提供参考策略。  相似文献   

9.
Wnt蛋白是一组调控胚胎形成期间细胞间信号传导的高度保守的分泌信号分子.在过去的几年里,由Wnt蛋白触发的不同信号通路已经得到了详尽的研究.Wnt基因与Wnt信号通路组成分子的突变可引起发育缺陷,异常的Wnt信号传导可导致人类疾病包括肿瘤的发生.许多证据都表明,Wnt信号通路的失调与乳腺癌的发生发展密切相关.micro...  相似文献   

10.
Wnt/β-catenin信号通路又被称为经典Wnt信号通路,在早期胚胎发育、成体组织稳态维持、干细胞干性调控和肿瘤发生等过程中均发挥重要作用.经典Wnt信号通路的核心信号转导因子β-catenin与核内转录因子TCF/LEF家族成员结合后,通过募集或替换一系列协同作用因子,诱导染色质结构变化,调控Wnt信号靶基因的转录.本文将从Wnt信号靶基因转录调控的基本模式、分子机制、表观遗传学调控和意义等方面,总结近年来有关Wnt信号靶基因转录调控的研究成果,方便读者更好地理解Wnt信号通路靶基因的转录调控.  相似文献   

11.
In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication. Wnt7a is expressed in the luminal epithelium, whereas the extracellular modulator of Wnt signaling, secreted frizzled-related protein 4 (SFRP4), is localized to the stroma. Studies have reported that SFRP4 expression is significantly decreased in endometrial carcinoma and that both SFRP4 and Wnt7a genes are differentially regulated in response to estrogenic stimuli. Aberrant Wnt7a signaling irrevocably causes organ defects and infertility and contributes to the onset of disease. However, specific frizzled receptors (Fzd) that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of SFRP4 in the endometrium has not been addressed. We show here that Wnt7a coimmunoprecipitates with Fzd5, Fzd10, and SFRP4 in Ishikawa cells. Wnt7a binding to Fzd5 was shown to activate beta-catenin/canonical Wnt signaling and increase cellular proliferation. Conversely, Wnt7a signaling mediated by Fzd10 induced a noncanonical c-Jun NH2-terminal kinase-responsive pathway. SFRP4 suppresses activation of Wnt7a signaling in both an autocrine and paracrine manner. Stable overexpression of SFRP4 and treatment with recombinant SFRP4 protein inhibited endometrial cancer cell growth in vitro. These findings support a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent on the Fzd repertoire of the cell and can be regulated by SFRP4.  相似文献   

12.

Background

Wnt signaling is important in development and can also contribute to the initiation and progression of cancer. The Secreted Frizzled Related Proteins (SFRPs) constitute a family of Wnt modulators, crucial for controlling Wnt signaling. Here we investigate the expression and role of SFRP3 in melanoma.

Methodology/Principal Findings

We show that SFRP3 mRNA is down-regulated in malignant melanoma tumors as compared to normal/benign tissue. Furthermore, we found that SFRP3 expression was lost in the malignant melanoma cell lines, A2058, HTB63 and A375, but not in the non-transformed melanocyte cell line, Hermes 3A. Methylated CpG rich areas were detected in the SFRP3 gene in melanoma cell lines and their SFRP3 expression could be restored using the demethylating agent, 5′aza-deoxycytidine. Addition of recombinant SFRP3 to melanoma cells had no effect on viable cell numbers, but decreased cell migration and invasion. Wnt5a signaling has been shown to increase the migration and invasion of malignant melanoma cells, and high expression of Wnt5a in melanoma tumors has been connected to a poor prognosis. We found that recombinant SFRP3 could inhibit Wnt5a signaling, and that it inhibited melanoma cell migration and invasion in a Wnt5a-dependent manner.

Conclusion/Significance

We conclude that SFRP3 functions as a melanoma migration and invasion suppressor by interfering with Wnt5a signaling.  相似文献   

13.

Background  

The Wnt family of secreted proteins is implicated in the regulation of cell fate during development, as well as in cell proliferation, morphology, and migration. Aberrant activation of the Wnt/β-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway by competing with the Frizzled receptor for Wnt ligands resulting in an attenuation of the signal transduction cascade. Loss of SFRP1 expression is observed in breast cancer, along with several other cancers, and is associated with poor patient prognosis. However, it is not clear whether the loss of SFRP1 expression predisposes the mammary gland to tumorigenesis.  相似文献   

14.
The Wnt (wingless-type) signaling pathway plays an important role in embryonic development, tissue homeostasis, and tumor progression becaluse of its effect on cell proliferation, migration, and differentiation. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or to Frizzled receptors. In recent years, aberrant expression of SFRPs has been reported to be associated with numerous cancers. As gene expression of SFRP members is often lost through promoter hypermethylation, inhibition of methylation through the use of epigenetic modifying agents could renew the expression of SFRP members and further antagonize deleterious Wnt signaling. Several reports have described epigenetic silencing of these Wnt signaling antagonists in various human cancers, suggesting their possible role as tumor suppressors. SFRP family members thus come across as potential tools in combating Wnt-driven tumorigenesis. However, little is known about SFRP family members and their role in different cancers. This review comprehensively covers all the available information on the role of SFRP molecules in various human cancers.  相似文献   

15.
ABSTRACT: BACKGROUND: Secreted frizzled-related proteins (SFRPs) are a family of proteins that block the Wnt signaling pathway and loss of SFRP1 expression is found in breast cancer along with a multitude of other human cancers. Activated Wnt signaling leads to inappropriate mammary gland development and mammary tumorigenesis in mice. When SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells exhibit a malignant phenotype which resembles the characteristics observed in metastatic breast cancer stem-like cells. However, the effects of SFRP1 loss on mammary gland development in vivo are yet to be elucidated. The work described here was initiated to investigate the role of SFRP1 in mammary gland development and whether SFRP1/ mice exhibit changes in mammary gland morphology and cell signaling pathways shown to be associated with SFRP1 loss in vitro. RESULTS: 10 week old nulliparous SFRP1/ mammary glands exhibited branching with clear lobulo-alveolar development, which normally only occurs in hormonally stimulated mid-pregnant wt mammary glands. Explant cultures of SFRP1/ mammary glands display increased levels of a well known Wnt signaling target gene, Axin2. Histomorphologic evaluation of virgin glands revealed that by 10 weeks of age, the duct profile is markedly altered in SFRP1/ mice showing a significantly higher density of ducts with distinct alveoli present throughout the mammary gland, and with focal ductal epithelial hyperplasia. These findings persist as the mice age and are evident at 23 weeks of age. Changes in gene expression, including c-Myc, TGFbeta-2, Wnt4, RANKL, and Rspo2 early in mammary gland development are consistent with the excessive hyper branching phenotype. Finally, we found that loss of SFRP1 significantly increases the number of mammary epithelial cells capable of mammosphere formation. CONCLUSIONS: Our study indicates that SFRP1 gene is critical for maintaining proper mammary gland development, and that reduced levels of SFRP1 results in hyperplastic lesions and its loss may be a critical event in cancer initiation.  相似文献   

16.
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Cellular senescence has emerged as a critical tumor suppressive mechanism in recent years, but relatively little is known about how senescence occurs. Here, we report that secreted Frizzled-related protein 1 (SFRP1), a secreted antagonist of Wnt signaling, is oversecreted upon cellular senescence caused by DNA damage or oxidative stress. SFRP1 is necessary for stress-induced senescence caused by these factors and is sufficient for the induction of senescence phenotypes. We present evidence suggesting that SFRP1 functions as a secreted mediator of senescence through inhibition of Wnt signaling and activation of the retinoblastoma (Rb) pathway and that cancer-associated SFRP1 mutants are defective for senescence induction.  相似文献   

18.
c-myc is frequently amplified in breast cancer; however, the mechanism of myc-induced mammary epithelial cell transformation has not been defined. We show that c-Myc induces a profound morphological transformation in human mammary epithelial cells and anchorage-independent growth. c-Myc suppresses the Wnt inhibitors DKK1 and SFRP1, and derepression of DKK1 or SFRP1 reduces Myc-dependent transforming activity. Myc-dependent repression of DKK1 and SFRP1 is accompanied by Wnt target gene activation and endogenous T-cell factor activity. Myc-induced mouse mammary tumors have repressed SFRP1 and increased expression of Wnt target genes. DKK1 and SFRP1 inhibit the transformed phenotype of breast cancer cell lines, and DKK1 inhibits tumor formation. We propose a positive feedback loop for activation of the c-myc and Wnt pathways in breast cancer.  相似文献   

19.
Aberrant macrophage infiltration and activation has been implicated in gastric inflammation and carcinogenesis. Overexpression of Wnt5a and downregulation of SFRP5, a Wnt5a antagonist, were both observed in gastric cancers recently. This study attempted to explore whether Wnt5a/SFRP5 axis was involved in macrophage chemotaxis and activation. It was found that both Wnt5a transfection and recombinant Wnt5a (rWnt5a) treatment upregulated CCL2 expression in macrophages, involving JNK and NFκB signals. Conditioned medium from Wnt5a-treated macrophages promoted macrophage chemotaxis mainly dependent on CCL2. SFRP5 from gastric epithelial cells (GECs) inhibited Wnt5a-induced CCL2 expression and macrophage chemotaxis. In addition, Wnt5a treatment stimulated macrophages to produce inflammatory cytokines and COX-2/PGE2, which was also suppressed by SFRP5 from GECs. These results demonstrate that Wnt5a induces macrophage chemotaxis and activation, which can be blocked by GEC-derived SFRP5, suggesting that Wnt5a overproduction and SFRP5 deficiency in gastric mucosa may together play an important role in gastric inflammation and carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号