首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We showed that the growth of lactic acid bacteria during alcoholic fermentation depends on the composition of the must. We illustrated how the addition of sulfur dioxide to the must before fermentation and the temperature of storage both affect the growth of these bacteria in the wine. Whereas species of Lactobacillus and Leuconostoc mesenteroides were isolated from grapes and must, Leuconostoc oenos was the only species isolated after alcoholic fermentation. This organism was responsible for the malolactic fermentation. Isolates of this species varied in their ability to ferment pentoses and hexoses. The survival of Leuconostoc oenos in wines after malolactic fermentation depended on wine pH, alcohol concentration, SO2 concentration, and temperature of storage.  相似文献   

2.
Five strains of Oenococcus oeni (syn. Leuconostoc oenos) under non-proliferating conditions were assessed for the performance of the malolactic fermentation in wine at various initial pH values, malic acid concentration and densities of cells. We succeeded in inducing the malolactic fermentation after inoculation of high densities of O. oeni G6 even in recalcitrant wines where the traditional malolactic fermentation was inhibited by adverse environmental conditions (low pH and high concentration of malic acid). Optimal degrading conditions in wine, under different physico-chemical environments, were determined in order to achieve rapid depletion of malic acid in red wine. Off-odour compounds were not formed under these conditions, suggesting an attractive alternative for wine production. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
InLeuconostoc oenos, the typical organism of the malolactic fermentation of wine, a 2-oxoglutarate decarboxylase was detected. This inducible enzyme decarboxylates 2-oxoglutarate but not pyruvate. The resulting succinaldehydate is rapidly reduced to 4-hydroxybutyrate or oxidized to succinate in further reactions. 2-Oxoglutarate decarboxylase is thiamin-diphosphate-dependent; the pH optimum is at 5.3 and theK m value for 2-oxoglutarate is 1.8 mmol/L.  相似文献   

4.
The polypeptide nisin (100 U/ml) prevented malolactic fermentation in wines by indigenous or intentionally added lactic acid bacteria. Nisin (100 U/ml)-resistant mutants of Leuconostoc oenos were obtained and used with nisin in wine to carry out a pure-culture malolactic fermentation in the presence or absence of other lactic acid bacteria. Nisin degradation by mutants was not observed, and residual nisin was detectable in wines 4 months after it was added. Results indicated that nisin or nisin with resistant bacterial starter cultures can be used to control malolactic fermentation in wines.  相似文献   

5.
Medium-chain fatty acids (C6 to C12), produced by yeast metabolism during alcoholic fermentation, are known to be inhibitory to lactic acid bacteria. The purpose of this work was to clarify the effect of both ethanol and decanoic and dodecanoic acids on the growth and malolactic activity of aLeuconostoc oenos strain isolated from Portuguese red wine. Ethanol in concentrations up to 12% had no significant effect on malolactic activity but strongly inhibited cell growth. The fatty acids decanoic acid, in concentrations up to 12.5 mg l–1, and, dodecanoic acid up to 2.5 mg l–1 seemed to act as growth factors stimulating also malolactic activity; at higher concentrations they exerted an inhibitory effect. We found clear pH dependence between pH 3.0 and pH 6.0, between decanoic acid concentration and its effect on malolactic activity, indicating that the undissociated molecule is the active form. At pH 3.0 the results can be explained by considering that fatty acids enter the cell as protonated molecules and dissociate in the cytoplasm due to the higher internal pH, leading to increased intracellular hydrogenous concentration. This may be the basis of two different effects that contribute to the observed inhibition: decrease in the intracellular pH and dissipation of the transmembrane proton gradient, thus inhibiting intracellular enzymes and ApH-dependent transport systems.  相似文献   

6.
Evaluation of Malolactic Bacteria Isolated from Oregon Wines   总被引:7,自引:1,他引:6       下载免费PDF全文
Oregon is a cool wine-producing region where grapes characteristically contain high concentrations of organic acids. To reduce the natural acidity and increase the microbiological stability and flavor complexity of the wine, malolactic fermentation is encouraged. In this study, strains of Leuconostoc oenos indigenous to Oregon wines were evaluated for their suitability to conduct malolactic fermentation in Oregon wines. Tests determined the malolactic activity of the Oregon isolates in comparison with commercial strains ML-34, PSU-1, MLT-kli, and ens 44-40 under various temperature and pH conditions. Sensitivities to sulfur dioxide, ethanol, and fumaric acid also were determined. Two Oregon strains, Er-1a and Ey-2d, were selected for commercial winemaking tests because they had greater malolactic activity under conditions of low pH (3.0) and low temperature (15 and 8°C), respectively.  相似文献   

7.
A large number of strains of Oenococcus oeni (formerly Leuconostoc oenos) that had been isolated from wines were checked for lysogeny with mitomycin C as inducer. As a result of this test, 45% of the strains proved to be lysogenic, suggesting that lysogeny is widespread among bacteria isolated from wines during malolactic fermentation. The sensitivity of bacteria to phages was very different, depending on the strain. All the lysogenic strains were resistant to infection by the temperate phage they released. Some phages infected none of the strains. Phages of Oenoc. oeni had a classical morphology, an isometric head, and a long striated tail. With the broadest host strain as an indicator, phages were detected in wines after malolactic fermentation. Received: 28 November 1997 / Accepted: 5 January 1998  相似文献   

8.
Summary The enhancement or induction of the protein synthesis was clearly observed in cells ofL. oenos labeled with35S for five proteins during heat shock at 42°C and acid shock at pH 3. Furthermore, no stress protein was induced after exposure ofL. oenos to ethanol shock 10% (v/v). Moreover, survival ofL. oenos in wine and ability to perform alolactic fermentation was improved after direct inoculation when cells were pretreated at 42°C.  相似文献   

9.
The bacterial population during malolactic fermentation of Tempranillo wine was studied using the polymerase chain reaction-denaturing gradient gel electrophoresis, a culture-independent method successfully used for identification and monitoring of bacterial population in different habitats included food fermentations. The results showed that Oenococcus oeni was the predominant species in the malolactic fermentation of Tempranillo wines, although the presence of Gluconobacter oxydans, Asaia siamensis, Serratia sp., and Enterobacter sp. was also observed. These results were partly coincidental with those obtained from a culture-dependent method, using a selective medium. Therefore, it may be concluded that for a more complete knowledge of the bacterial community present during malolactic fermentation of Tempranillo wine, an approach that combines a culture-independent method and a culture-dependent method would be advisable.  相似文献   

10.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

11.
A different capability to assimilate oleic acid from the culture medium has been demonstrated among malolactic Oenococcus oeni strains. Strains possessing higher percentages of oleic acid and its methylated derivative, dihydrosterculic acid, in their fatty acid profile showed higher cell viability and carried out a complete malolactic fermentation after their transfer into a wine lacking oleic acid. Wine supplementation with Tween 80 (polyoxyethylene-sorbitan-mono-oleate) enhanced cell survival of strains with lower capability to assimilate oleic acid and caused cell growth of strains with higher assimilative capacity, suggesting that oleic acid may act in wine as a survival factor for the former strains and as a growth factor for the latter strains. Practical consequences of these findings are also discussed. Received: 24 March 2001 / Accepted: 25 April 2001  相似文献   

12.
Malolactic fermentation (MLF), which improves organoleptic properties and biologic stability of some wines, may cause wine spoilage if uncontrolled. Bacteriocins were reported as efficient preservatives to control MLF through their bactericidal effect on malolactic bacteria. Leuconostoc mesenteroides subsp. cremoris W3 isolated from wine produces an inhibitory substance that is bactericidal against malolactic bacteria in model wine medium. Treatment of the culture supernatant of strain W3 with proteases eliminated the inhibitory activity, which proved that it is a true bacteriocin and we tentatively termed it mesentericin W3. The bacteriocin inhibited the growth of food-borne pathogenic bacteria such as Enterococcus faecalis, Listeria monocytogenes, and malolactic bacteria. It was active over a wide pH range and stable to organic solvents and heat. Mesentericin W3 was purified to homogeneity by a pH-mediated cell adsorption–desorption method, cation exchange, hydrophobic interaction, and reverse-phase chromatography. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy (MS) and partial amino acid sequence analysis revealed that mesentericin W3 was identical to mesentericin Y105.  相似文献   

13.
Pulsed-field gel electrophoresis of chromosomal DNA digested with NotI or SfiI was used to differentiate individual strains of Leuconostoc oenos. L. oenos isolates with 13 different restriction digest patterns were detected in New Zealand wines undergoing malolactic fermentation. The average genome size was estimated to be 1,800 kb.  相似文献   

14.
A screening method based on the selection of strains of Leuconostoc oenos 44.40 resistant to bovine bile was developed to obtain strains of the organism more resistant to lyophilization damage. These strains could be used as starter cultures in the malolactic fermentation of wine. The strain resistant to bovine bile was 20% more viable after lyophilization than strains not resistant to bovine bile. This was confirmed in both laboratory-scale production (100 ml) and pilot-scale production (100 liters). Lyophilized cells of strains sensitive and resistant to bovine bile were inoculated into wine, and the malate metabolism by the organism was monitored in the wine. Resistance to bovine bile did not change the malate metabolism characteristic of the organism. A comparison was made of the fatty acid compositions of the two strains. There was a difference in the fatty acid distribution pattern for these two strains. The bovine bile-resistant strain contained more dodecanoic, hexadecanoic, and octadecanoic acid and less tetradecanoic and hexadecanoic acid than did the bovine bile-sensitive strain. Both strains contained high levels of C-19 cyclopropane fatty acid.  相似文献   

15.
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.  相似文献   

16.
The control of wine microbial population during and beyond fermentation is of huge importance for wine quality. Lactic acid bacteria (LAB) in wine are responsible for malolactic fermentation (MLF) which can be desired in some cases and undesirable in others. Some LAB do not perform MLF and their uncontrolled growth could contribute to severe wine spoilage such as undesired flavours. Their identification and detection is considered crucial for numerous biotechnological applications in food fermentations, where, through acidification and secretion of bacteriocins, they contribute to reduce food spoilage and growth of pathogenic microorganisms. LAB have traditionally been classified using morphological or biochemical features. Primary isolation, biochemical identification and phenotypic analysis are laborious, time consuming and inaccurate and often lead to misidentification within some genera such as Pediococcus. Molecular identification based on suitable marker genes could be an attractive alternative to conventional morphological and biochemical methods. We assessed here the applicability of four housekeeping genes recA, rplB, pyrG and leuS in combination with the mle gene in multi-loci sequence typing (MLST) of Pediococcus parvulus and Pediococcus damnosus. Sequencing and comparative analysis of sequence data were performed on 19 strains collected during wine fermentation. A combination of these five marker genes allowed for a clear differentiation of the strains analysed, indicating their applicability in molecular typing. Analysis of the observed nucleotide polymorphisms allowed designing highly discriminative primers for a multi-loci sequence typing (MLST) method that proved successful in detecting a particular isolate or sequence type of P. parvulus when using either conventional PCR or Real Time PCR.  相似文献   

17.
Microbiology of the malolactic fermentation: Molecular aspects   总被引:4,自引:0,他引:4  
Abstract Malolactic fermentation conducted by lactic acid bacteria follows alcoholic fermentation during winemaking, and several positive effects make it indispensable for most wines. Research has focused on the growth and physiology of lactic acid bacteria in wine; resulting in the design of malolactic starter cultures. Future work on these starters will concentrate on aromatic changes as additional criteria for strain selection. Although the main features of the malolactic enzyme and its gene are known, the detailed mechanism of the malolactic reaction remains unclear. Cloning and expression of this activity in enological strains of Saccharomyces cereuisiae might be one of the next most important advances in the control of malic acid degradation in wine.  相似文献   

18.
Aims: The aim of this study was to assess the exopolysaccharide (EPS) production capacities of various strains of Oenococcus oeni, including malolactic starters and strains recently isolated from wine . Methods and Results: Fourteen O. oeni strains displaying or not (PCR check on genomic DNA) the gtf gene generally associated with β‐glucan formation and ropiness were grown on grape juice medium, dialysed MRS‐derived medium or synthetic medium. The soluble polysaccharides (PS) remaining in the culture supernatant were alcohol precipitated, and their concentration was quantified by the phenol‐sulfuric method. Most of the O. oeni strains studied produced significant amounts of EPS, independently of their genotype (gtf+ or gtf?). The EPS production was not directly connected with growth and could be stimulated by changing the growth medium composition. The molecular weight distribution analysis and attempts to determine the PS chemical structure suggested that most strains produce a mixture of EPS. Conclusion: Oenococcus oeni strains recently isolated from wine or cultivated for many generations as a malolactic starter are able to produce EPS other than β‐glucan. Significance and Impact of the Study: These EPS may enhance the bacteria survival in wine (advantage for malolactic starters) and may contribute to the wine colloidal equilibrium.  相似文献   

19.
Abstract

In spite of its traditional nature, wine making is largely concerned with the progress of biotechnology. High cell density reactors have potential for enology: improved performance of alcoholic and malolactic fermentations, smaller scale fermentation facilities, adaptation to continuous processes. Among the immobilization techniques, cell entrapment in alginate beads seems to be an impressive one. Alcoholic fermentation of wine, malolactic fermentation, bottle fermentation known as “Methode champenoise” and sparkling wine are among the industrial applications. Knowledge of kinetics and physiology in microorganisms in heterogeneous media has expanded in the last few years. The use of immobilized yeast cells for the champagne method would greatly simplify “remuage”. The compared metabolism of entrapped and free cells during the bottle fermentation shows differences, but the final product does not reveal significant sensory disparity. New products can be obtained with more thoroughly controlled conditions.  相似文献   

20.
Selected starter cultures of Oenococcus oeni are widely used to initiate malolactic fermentation (MLF) in wine. Nevertheless, the inoculated culture does not always develop as expected and undesired strains can grow causing wine spoilage. Therefore, methods that can reliably differentiate Ooeni strains are essential to monitor the population dynamics of MLF. This work presents a new multiplex PCR method that allows the simultaneous species identification and strain typification of Ooeni, based on the combined use of species-specific PCR primers and a Random Polymorphic DNA (RAPD)-PCR primer. This method represents an useful tool for the control of wine MLF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号