首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species,Cyrtograpsus angulatus andChasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November–December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans (Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanidPachycheles haigae) were also found occasionally. Caridean shrimp (Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m−3. The highest larval abundance was recorded inC. angulatus, with almost 8000°m−3. Significantly moreC. angulatus andC. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency ofC. granulata in low salinities (≤12‰) and at a particular sampling site may be related to local distribution patterns of the reproducing adult population. Unlike crab larvae, those of shrimp (P. argentinus) are retained inside the lagoon, where they develop from hatching through metamorphosis. They significantly prefer low salinity and occur at the lagoon surface more often at night. These patterns cannot be explained by larval release rhythms like those in brachyuran crabs, but may reflect diel vertical migrations to the bottom. It is concluded that osmotic stress as well as predation pressure exerted by visually directed predators (small species or life-cycle stages of estuarine fishes) may be the principal selection factors for the evolution of hatching and migration rhythms in decapod larvae, and that these are characteristics of export or retention mechanisms, respectively.  相似文献   

2.
The estuarine grapsid crabs Chasmagnathus granulata and Cyrtograpsus angulatus belong to the most typical and dominant inhabitants of brackish coastal lagoons in southeastern South America. In a combined laboratory and field investigation of juvenile growth, we measured the increase in body size in these species under controlled conditions as well as in field experiments (in Mar Chiquita lagoon, Argentina), seasonal changes in size frequency distribution of a natural population, and growth related changes in selected morphometric traits of male and female juveniles (relations between carapace width, carapace length, propodus height and length of the cheliped, and pleon width). At 24°C, Cy. angulatus grew faster than Ch. granulata; it reached the crab-9 instar (C9; 13 mm carapace width) after 92 days, while Ch. granulata required 107 days to reach the C8 instar (7.4 mm). At 12°C, growth ceased in both species. The pleon begins to show sexual differences in the C5 (Cy. angulatus) and C8 instar (Ch. granulata), respectively, while the chelae differentiate earlier in Ch. granulata than in Cy. angulatus (in C4 vs C6). In the field, growth was maximal in summer, and was generally faster than in laboratory cultures. However, there is great individual variability in size (about 25% even in the first crab instar) and in size increments at ecdysis, increasing throughout juvenile growth. Our data indicate that, in the field, small-scale and short-term variations in feeding conditions, temperature, and salinity account for an extremely high degree of variability in the absolute and relative rates of growth as well as in the time to sexual differentiation. Received in revised form: 20 September 2001 Electronic Publication  相似文献   

3.
Here we address the question of whether the presence of the burrowing crabs Chasmagnathus granulatus affects small- and large-scale habitat use by migrant shorebirds. This crab is the dominant species in soft bare sediments and vegetated intertidal areas along the SW Atlantic estuaries (southern Brazil 28°S to the northern Argentinean Patagonia 42°S). They generate very extensive burrow beds in soft bottom intertidal areas. Our information shows that this burrowing crab affects the small-scale habitat use by shorebirds, given that shorebirds never walk through the funnel-shaped entrances of burrows. Given that crab burrow entrances occupy up to 40% of the intertidal area, there is a large decrease of available shorebird habitat in crab beds, restricting their activity to the spaces between the burrows. The southern migratory shorebird Charadrius falklandicus maximize the use of these areas by foraging closer to the burrows than the other bird species. Neotropical migrants, such as Calidris fuscicollis, Pluvialis squatarola and Tringa melanoleuca, used foraging paths that tended to maximize the distance from burrows, especially the distance to larger burrows. A field experiment showed that this was not necessarily due to a decrease in the availability of polychaetes near the crab burrows. A combination of landscape measurements and satellite images showed that crab beds covered up to 40% of the intertidal area of the Mar Chiquita coastal lagoon (37°40′S, Argentina), and nearly 100% of the intertidal area of the Bahia Blanca estuary (38°48′-39°25′S, Argentina). These two estuaries are located along the migratory flyway of Neotropical migratory shorebirds, but the Bahia Blanca estuary (area∼110,000 ha) shows a much lower shorebird diversity than Mar Chiquita (area∼4500 ha). The most common species in Bahia Blanca is the two-banded plover C. falklandicus, the species least affected by crabs at Mar Chiquita and which prefers to use high-density crab areas as foraging sites. The oystercatcher Haematopus palliatus was also most abundant in high-density crab areas, but they used these areas for resting. The abundances of preys varied during the study period and between the crab density areas, indicating that the use of these areas by birds is independent of crab density. However, burrowing crabs affect the depth distribution of polychaete and thus their availability to shorebirds. We suggest that this shorebirds-burrowing organism interaction could be generalized for other intertidal estuarine habitats.  相似文献   

4.
Reproductive traits of three ocypodid crabs,Scopimera globosa, Ilyoplax pusillus andMacrophthalmus japonicus, were compared.S. globosa andI. pusillus, inhabiting the upper-middle intertidal zone, produced 1–2 large broods per year, whereasM. japonicus, inhabiting the lower intertidal zone, produced 4–5 small broods per year. InS. globosa andI. pusillus, ovigerous females remained in their plugged burrows without feeding until their eggs hatched. On the other hand, femaleM. japonicus fed actively on surface mud while incubating. We concluded that few large broods may be advantageous in crab species that incubate in burrows, whereas continuous small broods may be advantageous in species that feed actively while incubating.  相似文献   

5.
The intertidal burrowing crab Chasmagnathus granulatus Dana is the dominant species in soft sediments and vegetated intertidal areas along the SW Atlantic estuaries (southern Brazil 28°S to the northern Argentinean Patagonia 41°S) where it produces dense and extensive burrowing beds. The mud crab Cyrtograpsus angulatus Dana coexists with Ch. granulatus in this area, but it also inhabits areas to the south (northern and central Argentinean Patagonia). A survey covering both areas showed that C. angulatus rarely live in burrows when coexisting with Ch. granulatus, but form large burrowing beds when not coexisting with Ch. granulatus. When both species coexisted, burrowing beds of C. angulatus are restricted to sandy-muddy areas. Only rarely are burrows of C. angulatus found within Ch. granulatus beds. However, when Ch. granulatus were experimentally excluded within their burrowing beds, new settlers of C. angulatus made burrows and maintained them until they reached large size. Paired (inside and outside Ch. granulatus burrowing bed) sampling during high tide using beach nets showed that C. angulatus rarely venture inside the Ch. granulatus crab beds. Other field experiments showed that adults Ch. granulatus always displace C. angulatus from burrows. Furthermore, in several sites located south of the limit of distribution of Ch. granulatus at the Patagonian coast, soft bare intertidals are dominated by burrowing beds of C. angulatus mixed with the congener C. altimanus Dana. Together, these evidences suggest that the mud crab C. angulatus is displaced from soft bottom areas by the burrowing crab Ch. granulatus. It is an example of competitive exclusion through aggressive interference in soft-bottom habitats when the shared resource is the access to sediment surface, a two-dimensional well-defined resource.  相似文献   

6.
Longo, M.V. and Díaz, A.O. (2011). The claw closer muscle of two estuarine crab species, Cyrtograpsus angulatus and Neohelice granulata (Grapsoidea, Varunidae): histochemical fibre type composition. —Acta Zoologica (Stockholm) 00 : 1–7. This study permitted the characterization of four types of muscle fibres in the claw closer muscles of Cyrtograpsus angulatus and Neohelice granulata. Succinic dehydrogenase (SDH) for mitochondria, periodic acid Schiff (PAS) for glycogen, Sudan Black B for lipids and myosin‐adenosine triphosphatase (m‐ATPase) preincubated at alkaline and acid pHs were used for that purpose. The mean fibre diameters, the relative areas and frequencies of each muscle fibre type were calculated. Types I and IV would be considered ‘extreme’ groups with type I fibres large, weak and acid/alkaline‐labile m‐ATPase, weak SDH, PAS and Sudan, and type IV fibres small, very strong and acid/alkaline‐resistant m‐ATPase, strong SDH and PAS, and moderate Sudan. Types II and III would belong to a predominant ‘intermediate’ group. Type IV fibres were scarce in C. angulatus but represented 25% of the total fibre population in N. granulata. In C. angulatus, the relative area occupied by type I fibres was bigger than its relative proportion, whereas in N. granulata, types I and II had similar patterns. Concluding, variations in fibre type composition in the claw closer muscles of C. angulatus and N. granulata would be linked to different habitats and feeding behaviours.  相似文献   

7.
The activity pattern of intertidal crabs is influenced by factors that usually change rhythmically following tidal and/or diel cycles, and is often associated with the use of refuges. The movement activity of the burrowing crab Neohelice granulata was compared among three populations from SW Atlantic coastal areas where they face different tidal regimes, water salinities, substrata and biological factors. At each site, we examined the seasonal activity of the crabs (individuals collected in pitfall traps) in two types of habitat: mudflat and salt marsh. The working hypothesis is that the activity would vary according to the diverse environmental conditions encountered at geographical and local scales. Crab activity varied between sites and seasons showing to be more intense when habitats were covered by water. The most active groups were large males, followed by large non-ovigerous females. Ovigerous females were almost inactive. Most crabs were near or inside burrows at low tides in Mar Chiquita and Bahía Blanca, but they were active at both low and high tides in San Antonio during spring and summer. N. granulata were active in a wide range of temperatures: from 10 to 37 °C at low tides and at temperatures as low as 2 °C when covered by water. Differences of activity between mudflat and salt marsh varied among sites depending on flooding frequencies. Movement activity of N. granulata varied both in space and in time; crabs move under very different abiotic conditions (e.g., low or high tide, daylight or night, low and high temperature) and their movement may also be prevented or elicited by biotic conditions like burrow complexity, food quality and predation pressure. The wide set of conditions under which N. granulata can be active may explain why this is the only semiterrestrial crab inhabiting latitudes higher than 40°S in South America.  相似文献   

8.
The occurrence, characteristics and response to environmental salinity and dopamine of alkaline phosphatase (AP) activity were studied in chela muscle of the euryhaline crab Cyrtograpsus angulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited a high AP activity with a Michaelis-Menten kinetic (Km=1.21 mM). AP activity was strongly inhibited by EDTA (I50=2.26 mM). AP activity appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰) AP activity was lower than in 35‰ salinity. Upon an abrupt change to reduced salinity a short-term decrease of AP activity occurred, concomitant with the transition to hyperregulation. Furthermore, AP activity appeared to be under hormonal control since it was inhibited “in vivo” by 10−4 M dopamine. The response to both environmental salinity and dopamine suggests that AP activity could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation of C. angulatus. The possible functional relationship of AP activity with Na+/K+ ATPase in muscle is discussed.  相似文献   

9.
Neohelice granulata (previously known as Chasmagnathus granulata and C. granulatus) is a burrowing semiterrestrial crab found in the intertidal zone of estuaries, salt marshes and mangroves of the South-western Atlantic Ocean. Beginning in the late 1989s, an explosion of publications appeared in international journals dealing with its ecology, physiology, toxicology and behavior. A bibliometric analysis using the Scopus database allowed detecting 309 papers that deal with this species during the period 1986–2009. The number of papers per year increased continuously, reaching a mean annual value of 22.6 during the last 5 years; a great majority of them were authored by researchers from Argentina and Brazil. Neohelice granulata has become now one of the most studied crab species, after Carcinus maenas, Callinectes sapidus, Scylla serrata and Cancer pagurus and C. magister, and it can be considered as an emergent animal model for biochemical, physiological and ecological research.  相似文献   

10.
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5–32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity. Electronic Publication  相似文献   

11.
Uca pugilator, the sand fiddler crab, constructs two kinds of burrows in protected, sandy upper-intertidal and supratidal substrates on the west coast of Florida. Temporary burrows are built and used as a refuge by non-breeding crabs during high tide periods and at night when crabs cease feeding in the intertidal zone. Breeding burrows are constructed and defended by courting males and are the site of mating, oviposition and the incubation of eggs by females. Up to three ovigerous females may be accommodated in a single breeding burrow, each female sequestered in a separate terminal chamber. The construction and defence of burrows specialized for breeding may be an adaptive response by males to the preferences females exhibit when selecting a breeding site.  相似文献   

12.
The occurrence, localization and response to environmental salinity changes of Na+-K+ATPase activity were studied in each of the individual gills 4-8 of the euryhaline crab Cyrtograpsus angulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Na+-K+ATPase activity appeared to be differentially sensitive to environmental salinity among gills. Upon an abrupt change to low salinity, a differential response of Na+-K+ATPase activity occurred in each individual gill which could suggest a differential role of this enzyme in ion transport process in the different gills of C. angulatus. With the exception of gill 8, a short-term increase of Na+-K+ATPase specific activity was observed in posterior gills, which is similar to adaptative variations of this activity described in other euryhaline crabs. However, and conversely to that described in other hyperregulating crabs, the highest increase of activity occurred in anterior gills 4 by 1 day after the change to dilute media which could suggest also a role for these gills in ion transport processes in C. angulatus. The fact that variations of Na+-K+ATPase activity in anterior and posterior gills were concomitant with the transition to hyperregulation indicate that this enzyme could be a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab. The results suggest a differential participation of branchial Na+-K+ATPase activity in ionoregulatory mechanisms of C. angulatus. The possible existence of functional differences as well as distinct regulation mechanisms operating in individual gills is discussed.  相似文献   

13.
 A study of genotype-by-salinity interaction was carried out to compare the behavior of quantitative trait loci (QTLs) in two F2 populations derived from crosses between the cherry tomato, Lycopersicon esculentum Mill. var. cerasiforme, and two wild relatives Lycopersicon pimpinellifolium (Jusl.) Mill. and Lycopersicon chesmannii f. minor (Hook. f.) Mull., grown at two environmental conditions (optimum and high salinity). QTLs for earliness and fruit yield could be classified into four groups: “response-sensitive”, those detected only under control conditions or whose contribution significantly decreased in salinity; “response-tolerant”, detected only in salinity or in which the direction of their additive effects changed; “constitutive”, detected in both growing conditions; and “altered” QTLs, those where the degree of dominance changed according to the presence or absence of salt. Epistatic interactions were also influenced by the salt treatment. This differential allele effect at some (non-constitutive) QTLs induced by salt stress will make selection under an “optimum environment” unfruitful for the “response-tolerant” QTLs. Similarly, selection under salinity will ignore “response-sensitive” QTLs. Given that salinity is highly variable in the field, marker-assisted selection should take into account not only the “response-tolerant” but also the “response-sensitive” QTLs although there might be cases where selection in some QTLs for both conditions is not feasible. Comparing both populations, very few QTLs showed the same behavior. Received: 5 August 1996 / Accepted: 25 October 1996  相似文献   

14.
Reproductive traits at the beginning and the end of the annual reproductive season were compared between two populations of the intertidal crab Chasmagnathus granulatus living in ecologically contrasting habitats: (1) Mar Chiquita (MC) (37°45′S, 57°19′W), a highly productive estuarine coastal lagoon with strong salinity fluctuations. (2) San Antonio Bay (SA) (40°46′S, 64°50′), a physically stable but less productive coastal marine environment. Number, size, and elemental composition (CHN) of eggs and larvae differed significantly between populations. Regardless of the season, more but smaller eggs and larvae were produced in MC, while eggs and larvae from SA revealed higher dry mass and C/N ratios indicating higher lipid content. A latitudinal temperature gradient cannot explain these patterns, suggesting that other environmental factors including salinity, quality or quantity of benthic food sources and productivity may be responsible. In both populations, fecundity and biomass per egg were higher at the beginning as compared to the end of the reproductive season. As a consequence, the reproductive effort was consistently maximal at the beginning of the season. At MC, also variability was found between two successive years. Intraspecific (both interpopulational and seasonal) variations in reproductive and developmental traits may be important for the formation of physiologically different metapopulations along the wide geographic range of C. granulatus.  相似文献   

15.
Animals living on upper intertidal mudflats experience habitat desiccation during neap tides when water does not flood the habitat. Individuals of the manicure crab Cleistostoma dilatatum construct cone-shaped towers at the entrance of their burrows, in which they remain during neap tides. These towers are the tallest known structures compared to body size built by crabs living on intertidal flats. The frequency of tower construction followed semilunar tidal cycles with most building done prior to neap tides when few crabs were active on the mudflat surface. Bigger crabs tended to make taller and wider towers with a wider pinhole on the top. These towers may regulate the microclimate in burrows.  相似文献   

16.
Crustacean neurons, obtained from the cerebral ganglion of the mud crab Scylla paramamosain, were successfully cultured in vitro. They maintained typical morphological characteristics and showed better outgrowth in modified Medium 199 (M199) medium than that in Liebowitz’s L-15 medium. Fetal bovine serum (FBS), muscle extracts, and hemolymph of the mud crab S. paramamosain were added as supplements. Only 20% FBS could promote neuron outgrowth, while muscle extracts and hemolymph of S. paramamosain did not improve neuron outgrowth. For cell dissociation, both collagenase type I and trypsin worked well as determined by initial cell viability and following cell outgrowth potential. More than six kinds of cells with different morphological characteristics were identified in the neuron outgrowth. They were “small cells”, “veilers”, “branchers”, “multipolar cells”, “super-large cell”, and “bipolar cells”. Among all of the cells, bipolar cells were identified for the first time in crustacean neurons culture and they could live longer than other cells. The neurons could grow for more than a week before retraction and eventual degradation.  相似文献   

17.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

18.
Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.  相似文献   

19.
We report a comparative analysis of the environmental conditions prevailing at each successful breeding event of the Chilean flamingo (Phoenicoptarus chilensis) during the 1969–2010 period in Mar Chiquita, a large salt lake near Córdoba, Argentina. Breeding was monitored annually by air. The following parameters were measured: rainfall, water level water salinity, availability of shoreline and offshore (islands) mudflats, presence of brine shrimp (Artemia franciscana), and presence of the Argentine silverside fish (Odonthotestes bonariensis). During the study period, Mar Chiquita underwent great variations in level, reaching the highest level in its geological history. Salinity ranged from 274 down to 22 g l−1. Artemia was present during the high-salinity periods and was absent when salinity dropped below 55 g l−1, and the lake was invaded by the silverside. Flamingos bred irregularly during both high- and low-salinity periods (11 successful attempts in 42 years). Comparison of breeding and non-breeding years showed that the only environmental factor always associated with breeding events was availability of mudflats, mostly bordering islands. Water level increases over 0.90 m during the breeding season may flood the nesting areas and affect breeding success. Rapid decreases in lake level may also affect breeding by favoring predation or via nutrient availability. Other factors (water level, water salinity, local rainfall, and presence of Artemia and silverside) were within similar ranges in breeding and non-breeding years. Our surveys provided indirect evidence suggesting that food availability may influence flamingo breeding in Mar Chiquita. Management implications of our study include: (a) habitat suitability analysis of wetlands like Mar Chiquita should consider that availability of offshore mudflats free of vertebrate predators is an essential requirement for flamingo conservation and (b) drastic and rapid increases or decreases in water level due to human control of river inflows may affect chances of successful flamingo breeding and therefore should be evaluated carefully.  相似文献   

20.
Longo, M.V., Goldemberg, A.L. and Díaz, A.O. 2011. The claw closer muscle of Neohelice granulata (Grapsoidea, Varunidae): a morphological and histochemical study. —Acta Zoologica (Stockholm) 92 : 126–133. The claw closer muscle of Neohelice granulata was studied according to histological, histochemical, and morphometrical criteria. Adult male crabs in intermoult stage were collected from Mar Chiquita Lagoon (Buenos Aires, Argentina). Muscle fibers show evident striations and oval‐elongated nuclei with loose chromatin. The loose connective tissue among muscle fibers consists of cells and fibers embedded in an amorphous substance. Muscle histochemistry reveals two slow fiber types: ‘A’ and ‘B’. Prevailing A fibers are larger, and they usually show, with respect to B type, a weaker reaction to whole techniques. Fibers with short (SS), intermediate (IS), and long sarcomeres (LS) appear in the claw closer muscle, being the LS fibers predominant. Concluding, the histochemical and morphometrical characteristics of the claw closer muscle fibers of N. granulata are indicative of slow fibers. The slow A type (low resistant to fatigue) prevails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号