首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bindin specifically binds to egg surface sulfated fucan polysaccharides and mediates the attachment of sperm to the egg during fertilization. Sulfate esters are critical for this interaction. We have examined the effect of different anionic groups on the relative binding affinities of a series of homologous anionic polymers for bindin to determine the extent to which other charged moieties can substitute for sulfate. We found that bindin displays a remarkable specificity for sulfate- or sulfonic acid-containing polymers. The relative affinities of poly(vinyl sulfate) and poly(styrenesulfonic acid) are four orders of magnitude higher than polymers containing phosphate esters or carboxyl groups. The bindin-mediated aggregation of sea urchin eggs was inhibited by the sulfated polymers but not the other anionic polymers. This high degree of selectivity for sulfated polymers is not observed for the binding of the polyanions to most other proteins and basic polypeptides. These results suggest that the binding is not due to the formation of simple salt bridges, and that all three non-ester oxygen atoms of the sulfate groups are involved in multiple bonding interactions with a complementary 'docking site' on the bindin polypeptide. The orientation of the polysaccharide sulfate oxygen atoms relative to the protein binding site may be an important determinant of the specificity of polysaccharide binding.  相似文献   

2.
Boar sperm acrosin is an acrosomal protease with trypsin-like specificity, and it functions in fertilization by assisting sperm passage through the zona pellucida by limited hydrolysis of this extracellular matrix. In addition to a proteolytic active site domain, acrosin binds the zona pellucida at a separate binding domain that is lost during proacrosin autolysis. In this study, we quantitate the binding of proacrosin to the physiological substrate for acrosin, the zona pellucida, and to a non-substrate, the polysulfated polysaccharide fucoidan. Binding was analogous to sea urchin sperm bindin that binds egg jelly fucan and the vitelline envelope of sea urchin eggs. Proacrosin was found to bind to fucoidan and to the zona pellucida with binding affinities similar to bindin interaction with egg jelly fucan. These interactions were competitively inhibited by similar relative molecular mass polysulfated polymers. Since bindin and proacrosin have distinctly different amino acid sequences, their interaction with acidic sulfate esters demonstrates an example of convergent evolution wherein different macromolecules localized in analogous sperm compartments have the same biological function. From cDNA sequence analysis of proacrosin, this binding may be mediated through a consensus sequence for binding sulfated glycoconjugates. Proacrosin binding to the zona pellucida may serve as both a recognition or primary sperm receptor, as well as maintaining the sperm on the zona pellucida once the acrosome reaction has occurred.  相似文献   

3.
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of sulfation among different species. In contrast the algal fucans may have some regular repeating structure but are clearly more heterogeneous when compared with the echinoderm fucans. The structures of the sulfated fucans from brown algae also vary from species to species. We compared the anticoagulant activity of the regular and repetitive fucans from echinoderms with that of the more heterogeneous fucans from three species of brown algae. Our results indicate that different structural features determine not only the anticoagulant potency of the sulfated fucans but also the mechanism by which they exert this activity. Thus, the branched fucans from brown algae are direct inhibitors of thrombin, whereas the linear fucans from echinoderms require the presence of antithrombin or heparin cofactor II for inhibition of thrombin, as reported for mammalian glycosaminoglycans. The linear sulfated fucans from echinoderms have an anticoagulant action resembling that of mammalian dermatan sulfate and a modest action through antithrombin. A single difference of one sulfate ester per tetrasaccharide repeating unit modifies the anticoagulant activity of the polysaccharide markedly. Possibly the spatial arrangements of sulfate esters in the repeating tetrasaccharide unit of the echinoderm fucan mimics the site in dermatan sulfate with high affinity for heparin cofactor II.  相似文献   

4.
Mummery RS  Mulloy B  Rider CC 《Glycobiology》2007,17(10):1094-1103
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.  相似文献   

5.
We have examined the carbohydrate specificity of bindin, a sperm protein responsible for the adhesion of sea urchin sperm to eggs, by investigating the interaction of a number of polysaccharides and glycoconjugates with isolated bindin. Several of these polysaccharides inhibit the agglutination of eggs by bindin particles. An egg surface polysaccharide was found to be the most potent inhibitor of bindin- mediated egg agglutination. Fucoidin, a sulfated fucose heteropolysaccharide, was the next most potent inhibitor, followed by the egg jelly fucan, a sulfated fucose homopolysaccharide, and xylan, a beta(1 leads to 4) linked xylose polysaccharide. A wide variety of other polysaccharides and glycoconjugates were found to have no effect on egg agglutination. We also report that isolated bindin has a soluble lectinlike activity which is assayed by agglutination of erythrocytes. The bindin lectin activity is inhibited by the same polysaccharides that inhibit egg agglutination by particulate bindin. This suggests that the egg adhesion activity of bindin is directly related to its lectin activity. We have established that fucoidin binds specifically to bindin particles with a high apparent affinity (Kd = 5.5 X 10(-8) M). The other polysaccharides that inhibit egg agglutination also inhibit the binding of 125I-fucoidin to bindin particles, suggesting that they compete for the same site on bindin. The observation that polysaccharides of different composition and linkage type interact with bindin suggests that the critical structural features required for binding may reside at a higher level of organization. Together, these findings strengthen the hypothesis that sperm-egg adhesion in sea urchins is mediated by a lectin-polysaccharide type of interaction.  相似文献   

6.
Properdin, which stabilizes the C3 convertase during the activation of the alternate complement pathway, contains amino acid sequence homologies with several proteins that bind sulfated glycoconjugates, including the adhesive protein thrombospondin and the leech salivary protein antistasin. This homology is based around the sequence Cys-Ser-Val-Thr-Cys-Gly-X-Gly-X-X-X-Arg-X-Arg. To determine if these homologous amino acid sequences are sulfated glycoconjugate-binding domains, purified native properdin, as well as activated properdin (a high molecular weight form of properdin), were examined for binding to various lipids in solid phase radioimmunoassays. Of the lipids tested, both native and activated properdin bind with high affinity only to sulfatide [Gal(3-SO4)beta 1-1 Cer], but not to comparable levels of cholesterol-3-SO4, or several neutral glycolipids, gangliosides, and phospholipids. Sulfatide binding by both forms of properdin is inhibited by dextran sulfate (Mr = 500,000) or fucoidan, whereas only the activated form is inhibited by dextran sulfate (Mr = 5,000) or heparin. Comparable levels of chondroitin sulfates A, B, and C, keratan sulfate, dextran (Mr = 90,000), or hyaluronic acid do not inhibit binding. Taken together, these data suggest that properdin, like antistasin and thrombospondin, binds sulfated glycoconjugates and supports the conclusion that the homologous sequences are sulfated glycoconjugate-binding domains.  相似文献   

7.
Variations in sulfation of heparan sulfate (HS) affect interaction with FGF, FGFR, and FGF-HS-FGFR signaling complexes. Whether structurally distinct HS motifs are at play is unclear. Here we used stabilized recombinant FGF7 as a bioaffinity matrix to purify size-defined heparin oligosaccharides. We show that only 0.2%-4% of 6 to 14 unit oligosaccharides, respectively, have high affinity for FGF7 based on resistance to salt above 0.6M NaCl. The high affinity fractions exhibit highest specific activity for interaction with FGFR2IIIb and formation of complexes of FGF7-HS-FGFR2IIIb. The majority fractions with moderate (0.30-0.6M NaCl), low (0.14-0.30M NaCl) or no affinity at 0.14M NaCl for FGF7 supported no complex formation. The high affinity octasaccharide mixture exhibited predominantly 7- and 8-sulfated components (7,8-S-OctaF7) and formed FGF7-HS-FGFR2IIIb complexes with highest specific activity. Deduced disaccharide analysis indicated that 7,8-S-OctaF7 comprised of DeltaHexA2SGlcN6S in a 2:1 ratio to a trisulfated and a variable unsulfated or monosulfated disaccharide. The inactive octasaccharides with moderate affinity for FGF7 were much more heterogenous and highly sulfated with major components containing 11 or 12 sulfates comprised of predominantly trisulfated disaccharides. This suggests that a rare undersulfated motif in which sulfate groups are specifically distributed has highest affinity for FGF7. The same motif also exhibits structural requirements for high affinity binding to dimers of FGFR2IIIb prior to binding FGF7 to form FGF7-HS-FGFR2IIIb complexes. In contrast, the majority of more highly sulfated HS motifs likely play FGFR-independent roles in stability and control of access of FGF7 to FGFR2IIIb in the tissue matrix.  相似文献   

8.
The effect of sulfate esterification of the 3 alpha- or 7 alpha-hydroxyl groups of taurochenodeoxycholate on calcium binding was studied at 0.154 M NaCl in the presence and absence of phosphatidylcholine using a calcium electrode. For comparison, similar studies were made with taurochenodeoxycholate, taurodeoxycholate, and taurocholate. No high affinity calcium binding was demonstrable for any of these bile salts in pre-micellar solutions. Taurine-conjugated bile salts have greater affinity for calcium when in a micellar form. At elevated bile salt concentrations, the calcium binding of unsulfated dihydroxy taurine conjugates was similar to that of the monosulfate esters of taurochenodeoxycholate. The presence of phosphatidylcholine decreased calcium binding of the unsulfated dihydroxy bile salts and slightly increased calcium binding by taurocholate. However, the addition of phosphatidylcholine to monosulfate esters of taurochenodeoxycholate results in large increments in calcium binding. The results indicate that increased calcium binding due to the presence of phosphatidylcholine in bile salt solutions depends, in part, on the hydrophilicity of the bile salt and that the interaction of monosulfate esters of taurochenodeoxycholate with phosphatidylcholine leads to the formation of a high affinity calcium binding site.  相似文献   

9.
The egg jelly coats of sea urchins contains sulfated polysaccharides responsible for inducing the sperm acrosome reaction which is an obligatory event for sperm binding to, and fusion with, the egg. Here, we extend our study to the sea urchin Strongylocentrotus franciscanus. The egg jelly of this species contains a homofucan composed of 2- O -sulfated, 3-linked units which is the simplest structure ever reported for a sulfated fucan. This polysaccharide was compared with other sulfated alpha-L-fucans as inducers of acrosome reaction in conspecific and heterospecific sperm. Although all these fucans are linear polymers composed of 3-linked alpha-L-fucopyranosyl units, they differ in the proportions of 2-O- and 4-O-sulfation. The reactivity of the sperm of each species is more sensitive to the egg jelly sulfated fucan found in their own species. The reactivity of the sperm does not correlate with the charge density of the fucan, but with the proportion of 2-O- and 4-O-sulfation. The pattern of sulfation may be an important feature for recognition of fucans by the sperm receptor contributing to the species-specificity of fertilization.  相似文献   

10.
Sulfated polysaccharides (fucans and fucoidans) from brown algae show several biological activities, including anticoagulant and anti-inflammatory activities. We have extracted a sulfated heterofucan from the brown seaweed Lobophora variegata by proteolytic digestion, followed by acetone fractionation, molecular sieving, and ion-exchange chromatography. Chemical analyses and 13C-NMR and IR spectroscopy showed that this fucoidan is composed of fucose, galactose, and sulfate at molar ratios of 1:3:2. We compared the anticoagulant activity of L. variegata fucoidan with those of a commercial sulfated polysaccharide (also named fucoidan) from Fucus vesiculosus and heparin. The experimental inflammation models utilized in this work revealed that fucoidan from L. variegata inhibits leukocyte migration to the inflammation site. Ear swelling caused by croton oil was also inhibited when sulfated polysaccharides from F. vesiculosus and L. variegata were used. The precise mechanism of different action between homo-and heterofucans is not clear; nevertheless, the polysaccharides studied here may have therapeutic potential in inflammatory disorders. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 9, pp. 1265–1273.  相似文献   

11.
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of individual females of the sea urchin Strongylocentrotus purpuratus spawned eggs having only one of two possible sulfated fucan electrophoretic isotypes, a slow migrating (sulfated fucan I), or a fast migrating (sulfated fucan II) isotype. The remaining 10% of females spawned eggs having both sulfated fucan isotypes. The two sulfated fucan isotypes were purified from egg jelly coats and their structures determined by NMR spectroscopy and methylation analysis. Both sulfated fucans are linear polysaccharides composed of 1-->3-linked alpha-L-fucopyranosyl units. Sulfated fucan I is entirely sulfated at the O -2 position but with a heterogeneous sulfation pattern at O -4 position. Sulfated fucan II is composed of a regular repeating sequence of 3 residues, as follows: [3-alpha-L-Fuc p - 2,4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)- 1]n. Both purified sulfated fucans have approximately equal potency in inducing the sperm acrosome reaction. The significance of two structurally different sulfated fucans in the egg jelly coat of this species could relate to the finding that the sperm receptor protein which binds sulfated fucan contains two carbohydrate recognition modules of the C-type lectin variety which differ by 50% in their primary structure.   相似文献   

12.
The calcium-dependent polymerization of human serum amyloid P component (SAP) was spectrophotometrically monitored in 0.15 M NaCl at pH 7.5. The rate of the polymerization depended on the concentrations of SAP and Ca2+. It was shown for the first time that the calcium-dependent polymerization of SAP was inhibited by some sulfated polysaccharides. Most potent inhibitors were heparin and high molecular weight dextran sulfate of Mr 1.0.10(6). The inhibitory activity of glycosaminoglycans is accordant to their binding affinity for SAP, which was reported previously (Hamazaki, H. (1987) J. Biol. Chem. 262, 1456-1460). The polymerized SAP was reversibly dissociated by heparin and high molecular weight dextran sulfate. The results suggest that heparin and high molecular weight dextran sulfate may be a useful dissociating agent of polymerized SAP in amyloid deposits.  相似文献   

13.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

14.
This study analyzed sulfated polysaccharides, such as fucans, from the brown alga Lobophora variegata to verify their antioxidant activity in vitro, antitumoral effect on human colon adenocarcinoma cell line HT-29, and anti-inflammatory activity. Sulfated polysaccharide fractions containing fucans were obtained after fractionation with increasing volumes (v) of acetone (0.3–2.0 v). The polysaccharide was eluted with 1.5 v of acetone and named F1.5. The results showed that F1.5 contained a high yield. Chemical and structure analyses were performed by infrared spectroscopy, electrophoresis in agarose gel, and chemical dosages (sugar, protein, phenolic compounds, and sulfate). We observed that this sulfated polysaccharide had antioxidant activity and antitumoral effect. Anti-inflammatory activity in vivo of F1.5 was observed in the croton oil mouse-ear model at 75 mg kg-1. The results were correlated with histopathological analysis.  相似文献   

15.
Carbohydrate-protein interactions are known to be important in gamete interactions. We therefore investigated the inhibition of boar sperm acrosin amidase activity by carbohydrates. The sulfated polysaccharides fucoidan and dextran sulfate inhibited amide hydrolysis whereas dextran and various monosaccharides did not inhibit acrosin amidase activity. The kinetics of the inhibition corresponded to those characteristic when multiple forms of an enzyme are present. Such a kinetic result was consistent with the presence of the known autolytically produced forms of acrosin. It was previously shown that sulfated polysaccharides inhibit sperm-egg binding and that acrosin binds carbohydrate. We propose that the sulfated polysaccharide inhibition of acrosin amidase activity observed here is causally related to the previously observed sulfated polysaccharide inhibition of sperm binding to the zona pellucida.  相似文献   

16.
To elucidate the anti-ulcer potential of Cladosiphon fucoidan, anti-peptic activity, bFGF stabilizing activity and inflammatory properties of this and related substances were investigated. Anti-peptic activity was observed with this and other sulfated polysaccharides such as dextran sulfate, carrageenan, and Fucus fucoidan. However, non-sulfated polysaccharides such as mannan and dextran did not exert the anti-peptic activity. The loss of bFGF bioactivity was prevented by all sulfated polysaccharides tested except chondroitin sulfate, at pH 7.4 and at pH 4.0. At pH 2.0, only heparin protected the bFGF activity. The generation of superoxide by macrophages and PMNs was stimulated by dextran sulfate, carrageenan, and Fucus fucoidan, whereas Cladosiphon fucoidan, heparin and chondroitin did not. Dextran sulfate, carrageenan, and Fucus fucoidan also stimulated the secretion of TNFalpha from macrophages, while Cladosiphon fucoidan did not. Thus, Cladosiphon fucoidan is a sulfated polysaccharide without inflammatory action. These results suggest that Cladosiphon fucoidan is a safe substance with potential for gastric protection.  相似文献   

17.
Crude fucoidan was extracted from the brown alga Undaria pinnatifida collected monthly from April to last July in Peter the Great Bay (Japan Sea, Russia). The amount of crude fucoidan rose markedly from April to June–July (from 3.2 to 16.0% dry weight) as the plant matures. An analysis of the monosaccharide composition of the fucoidan extracted showed that the alga synthesized polysaccharides with various structures which were dependent on the algae age. In juvenile plants collected in April–May, this was represented by sulfated manno-galactofucan containing up to 19–28 mol% of mannose and about 20 mol% of galactose, whereas in matured plants collected in June–July, the polysaccharide was represented by a sulfated galactofucan containing more than 38 mol% galactose. It is postulated that the production of sori causes a subsequent effect on fucoidan synthesis and leads to an enhanced of crude fucoidan content and an increased molar concentration of galactose. Crude fucoidan content in sporophylls increased 5 times, and galactose content in this polysaccharide rose s1.6 times with sori formation. The structural characteristics of the fucoidan extracted from sporophylls of Undaria collected in July were also studied. The fractionation of crude fucoidan on DEAE-Sephadex A-25 gave two fractions, F1 and F2 in equal quantities. F1 was characterized as manno-galactofucan sulfate and F2 was galactofucan sulfate. The molecular weights of both fractions were in a range of 30–80 kDa. Analysis of fucoidan structure using ESI-FTICR mass spectrometry showed the presence of mixed oligosaccharides consisting of fucose and galactose. Presumably, the polysaccharide molecules contain blocks built up of successively linked residues of fucose and galactose. These blocks are built from two to five or more residues of monosaccharides. According to IR-spectroscopy data, the main portion of sulfates is located at C2; in addition, sulfate esters are also present at C4 on the fucose and C3 and C6 of the galactose units.  相似文献   

18.
Algal fucoidan is a complex sulfated polysaccharide whose structural characterization requires powerful spectroscopic methodologies. While most of the structural investigations reported so far have been performed using NMR as the main spectroscopic method, we report herein data obtained by negative electrospray ionization mass spectrometry. MS analysis has been carried out on oligosaccharides obtained by partial hydrolysis of fucoidan from the brown algae Ascophyllum nodosum. Oligosaccharide mixtures were fractionated by size exclusion chromatography, which allowed the analysis of oligomers ranging from monosaccharide to pentasaccharide. Monosaccharides were detected as monosulfated as well as disulfated forms. Besides, part of the oligosaccharides exhibited a high content of sulfate, evidencing that fucoidan contains disulfated fucosyl units. Fragmentation experiments yielded characteristic fragment ions indicating that the fucose units are mainly 2-O-sulfated. This study demonstrates that highly sulfated oligosaccharides from fucoidan can be analyzed by ESIMS which gives additional information about the structure of this highly complex polysaccharide.  相似文献   

19.
Invasion of human erythrocytes by Plasmodium knowlesi requires the Duffy blood group antigen. P. knowlesi merozoites synthesize a 135-kDa polypeptide which binds to the Duffy antigen with receptor-like specificity. In this study, we show that the sulfated polysaccharide fucoidan and the glycosaminoglycan dextran sulfate inhibit the binding of the 135-kDa polypeptide to human Duffy-positive and rhesus erythrocytes while the chondroitin sulfates do not. Fucoidan and dextran sulphate also blocked the in vitro invasion of human Duffy b and rhesus erythrocytes cells by P. knowlesi merozoites. These inhibitors were more effective at blocking the binding of the 135-kDa polypeptide to human Duffy b erythrocytes than to rhesus erythrocytes, which correlated with them having a greater inhibitory effect on invasion of merozoites into human than into rhesus erythrocytes. The blocking by these sulfated sugars is not related to charge density on the polysaccharides; fucoidan with a relatively low charge density blocks binding of the 135-kDa polypeptide at 4 micrograms/ml, while the highly negatively charged chondroitin sulfates do not block binding even at the concentration of 1 mg/ml. Furthermore, fucoidan-Sepharose bound and removed the 135-kDa polypeptide from parasite culture supernatants with a selectivity equal to that of the Duffy blood group antigen. The negatively charged sulfate groups on fucoidan and dextran sulfate and the conformation in which they are held possibly mimic similarly charged groups on the Duffy antigen which bind the 135-kDa P. knowlesi polypeptide.  相似文献   

20.
Circumsporozoite (CS) proteins, which densely coat malaria (Plasmodia) sporozoites, contain an amino acid sequence that is homologous to segments in other proteins which bind specifically to sulfated glycoconjugates. The presence of this homology suggests that sporozoites and CS proteins may also bind sulfated glycoconjugates. To test this hypothesis, recombinant P. yoelii CS protein was examined for binding to sulfated glycoconjugate-Sepharoses. CS protein bound avidly to heparin-, fucoidan-, and dextran sulfate-Sepharose, but bound comparatively poorly to chondroitin sulfate A- or C-Sepharose. CS protein also bound with significantly lower affinity to a heparan sulfate biosynthesis-deficient mutant cell line compared with the wild-type line, consistent with the possibility that the protein also binds to sulfated glycoconjugates on the surfaces of cells. This possibility is consistent with the observation that CS protein binding to hepatocytes, cells invaded by sporozoites during the primary stage of malaria infection, was inhibited by fucoidan, pentosan polysulfate, and heparin. The effects of sulfated glycoconjugates on sporozoite infectivity were also determined. P. berghei sporozoites bound specifically to sulfatide (galactosyl[3-sulfate]beta 1-1ceramide), but not to comparable levels of cholesterol-3-sulfate, or several examples of neutral glycosphingolipids, gangliosides, or phospholipids. Sporozoite invasion into hepatocytes was inhibited by fucoidan, heparin, and dextran sulfate, paralleling the observed binding of CS protein to the corresponding Sepharose derivatives. These sulfated glycoconjugates blocked invasion by inhibiting an event occurring within 3 h of combining sporozoites and hepatocytes. Sporozoite infectivity in mice was significantly inhibited by dextran sulfate 500,000 and fucoidan. Taken together, these data indicate that CS proteins bind selectively to certain sulfated glycoconjugates, that sporozoite infectivity can be inhibited by such compounds, and that invasion of host hepatocytes by sporozoites may involve interactions with these types of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号