首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of extracellular Mg2+ ([Mg2+]o) on basal and acetylcholine (ACh)-evoked amylase secretion and intracellular free Ca2+ ([Ca2+]i) in rat parotid acinar cells. In a medium containing 1.1 mM [Mg2+]o, ACh evoked significant increases in amylase secretion and [Ca2+]i. Either low (0 mM) or elevated (5 and 10 mM) [Mg2+]o attenuated ACh-evoked responses. In a nominally Ca2+ free medium, elevated [Mg2+]o attenuated basal and ACh-evoked amylase secretion and [Ca2+]i. In parotid acinar cells incubated with either 0, 1.1, 5 or 10 mM [Mg2+]o, ACh evoked a gradual decrease in [Mg2+]i. These results indicate that the ACh-evoked Mg2+ efflux is an active process since Mg2+ has to move against its gradient. Either lidocaine, amiloride, N-methyl-d-glucamine, quinidine, dinitrophenol or bumetanide can elevate [Mg2+]i above basal level. In the presence of these membrane transport inhibitors, ACh still evoked a decrease in [Mg2+]i but the response was less pronounced with either [Na+]o removal or in the presence of either amiloride or quinidine. These results indicate marked interactions between Ca2+ and Mg2+ signalling in parotid acinar cells and that ACh-evoked Mg2+ transport was not dependent upon [Na+]o.  相似文献   

2.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

3.
Several aspects of Mg2+ homeostasis were investigated in cultured chicken heart cells using the fluorescent Mg2+ indicator, FURAPTRA. The concentration of cytosolic Mg2+ ([Mg2+]i) is 0.48 ± 0.03 mM (n = 31). To test whether a putative Na/Mg exchange mechanism controls [Mg2+]i below electrochemical equilibrium, we manipulated the Na+ gradient and assessed the effects on [Mg2+]i. When extracellular Na+ was removed, [Mg2+]i increased; this increase was not altered in Mg-free solutions, but was attenuated in Ca-free solutions. A similar increase in [Mg2+]i, which was dependent upon extracellular Ca2+, was observed when intracellular Na+ was raised by inhibiting the Na/K pump with ouabain. These results do not provide evidence for Na/Mg exchange in heart cells, but they suggest that Ca2+ can modulate [Mg2+]i. In addition, removing extracellular Na+ caused a decrease in intracellular pH (pHi), as measured by pH-sensitive microelectrodes, and this acidification was attenuated when Cat+ was also removed from the solution. These results suggest that Ca2+ and H+ interact intracellularly. Since changes in the Na+ gradient can also alter pHi, we questioned whether pH can modulate [Mg2+]i. pHi was manipulated by the NH4Cl prepulse method. NH4 +-evoked changes in pHi, as measured by the fluorescent indicator BCECF, were accompanied by opposite changes in [Mg2+]i; [Mg2+]i changed by –0.16 mM/unit pH. These NH4 +-evoked changes in [Mg2+]i were not caused by movements of Mg2+ or Ca2+ across the sarcolemma or by changes in cytosolic Ca2+. Additionally, pHi was manipulated by changing extracellular pH (pHo). When pHo was decreased from 7.4 to 6.3, pHi decreased by 0.64 units and [Mg2+]i increased by 0.12 mM; in contrast, when pHo was raised from 7.4 to 8.3, pHi increased by 0.6 units and [Mg2+]i did not change significantly. The results of our investigations suggest that Ca 2+ and H+ can modulate [Mg2+]i, probably by affecting cytosolic Mg2+ binding and/or subcellular Mg2+ transport and that such redistribution of intracellular Mg2+ may play an important role in Mg2+ homeostasis in cardiac cells.  相似文献   

4.
BackgroundIn this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM–50 μM) on isolated mouse pancreatic acinar cells.MethodsChanges in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed.ResultsLuzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion.ConclusionThe melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function.General significanceThe effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.  相似文献   

5.
In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca2+ signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca2+ concentration ([Ca2+]c). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM–1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca2+]c peak response, a faster rate of decay of [Ca2+]c and lower values for the steady state of [Ca2+]c, compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca2+ mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca2+ mobilization induced by 10 pM CCK-8. On the other hand, Ca2+ entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca2+ signals.  相似文献   

6.
The giant axon of the squid has been extensively used as a model for studying Ca regulation in excitable cells. Different techniques (extrusion, injection and dialysis) have been employed to characterize Ca fluxes across the axon membrane. Since both Ca efflux and influx are markedly dependent on [Ca2+]i, considerable effort has been dedicated to determine the resting value of the [Ca2+]i. Results from different laboratories indicate that the [Ca2+]i, in a normal fibre, range from 20–100 nM. Under dialysis conditions (internal control), with an imposed [Ca2+]i of 80 nM, Ca influx is balanced by an outward Ca movement of about 40 f/CS. Ca extrusion occurs through two parallel transport systems: one having a high affinity for [Ca2+]i, dependent on ATP, not affected by Nai, Nao, Cao, Mgo and inhibited by internal vanadate (uncoupled component), the other, more prominent at relatively high [Ca2+]i, does not require ATP, is inhibited by Nai activated by Nao and not inhibited by vanadate. (Nao-dependent component). The existence of these two systems provide the axon with an effective way to maintain in the long term a constant low [Ca2+]i in spite of short term fluctuations due to increased Ca influx during nervous activity.  相似文献   

7.
The intracellular free Na+ concentration ([Na+]i) increases during muscarinic stimulation in salivary acinar cells. The present study examined in rat sublingual acini the role of extracellular Mg2+ in the regulation of the stimulated [Na+]i increase using the fluorescent sodium indicator benzofuran isophthalate (SBFI). The muscarinic induced rise in [Na+]i was approximately 4-fold greater in the absence of extracellular Mg2+. When Na+ efflux was blocked by the Na+,K+-ATPase inhibitor ouabain, the stimulated [Na+]i increase was comparable to that seen in an Mg2+-free medium. Moreover, ouabain did not add further to the stimulated [Na+]i increase in an Mg2+-free medium suggesting that removal of extracellular Mg2+ may inhibit the Na+ pump. In agreement with this assumption, ouabain-sensitive Na+ efflux and rubidium uptake were reduced by extracellular Mg2+ depletion. Our results suggest that extracellular Mg2+ may regulate [Na+]i in sublingual salivary acinar cells by modulating Na+ pump activity.  相似文献   

8.
Patel  R.  Yago  M.D.  Mañas  M.  Victoria  E.M.  Shervington  A.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):83-89
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg–1, I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg–1 urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 ± 2.42 mg dl–1 (n= 44) and >500 mg dl–1 (n= 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 ± 0.05 ul min–1 (n= 10) and 1.28 ± 0.16 ul min–1 (n= 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 ± 15.41 nM (n= 15) and 130.62 ± 17.66 nM (n= 8), respectively. CCK-8 (10–8M) induced a peak response of 436.55 ± 36.54 nM (n= 15) and 409.31 ± 34.64 nM (n= 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 ± 0.06 nM (n= 18) and 0.86 ± 0.04 nM (n= 10). In the presence of CCK-8 (10–8) [Mg2+]i in control and diabetic cells was 0.80 ± 0.05 nM (n= 18) and 0.60 ± 0.02 nM (n= 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis. (Mol Cell Biochem 261: 83–89, 2004)  相似文献   

9.
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. A hyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 M) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.  相似文献   

10.
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25°C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Δ[Mg2+]it) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Δ[Mg2+]it after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 μM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from ∼0.9 mM to ∼2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to ∼50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for ≥90 min. The initial Δ[Mg2+]it was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Δ[Mg2+]it (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Δ[Mg2+]it measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (∼40 mM). Normalization of intracellular pH using 10 μM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (∼0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.  相似文献   

11.
In the present investigation, intracellular sodium ([Na+]i) levels were determined in GH4C1 cells using the fluorescent probe SBFI. Fluorescence was determined by excitation at 340 nm and 385 nm, and emission was measured at 500 nm. Intracellular free sodium ([Na+]i) was determined by comparing the ratio 340/385 to a calibration curve. The ratio was linear between 10 and 60 mM Na+. Resting [Na+]i in GH4C1 cells was 26 ± 6.2 mM (mean ± SD). In cells incubated in Na+-buffer [Na+]i decreased to 3 ± 3.6 mM. If Na+/K+ ATPase was inhibited by incubating the cells with 1 mM ouabain, [Na+]i increased to 47 ± 12.8 mM in 15 min. Stimulating the cells with TRH, phorbol myristyl acetete, or thapsigargin had no effect on [Na+]i. Incubating the cells in Ca2+-buffer rapidly increased [Na+]i. The increase was not inhibited by tetrodotoxin. Addition of extracellular Ca2+, nimodipine, or Ni2+ to these cells immediately decreased [Na+]i, whereas Bay K 8644 enhanced the influx of Na+. In cells where [Na+]i was increased the TRH-induced increase in intracellular free calcium ([Ca2+]i) was decreased compared with control cells. Our results suggest that Na+ enters the cells via Ca2+ channels, and [Na+]i may attenuate TRH-induced changes in [Ca2+]i in GH4C1 cells. © 1993 Wiley-Liss, Inc.  相似文献   

12.
External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+]i was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 ± 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 ± 2 nM (n = 23), indicating that [Ca2+] entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 ± 5% (P 0.05, Student t-test). The distance between the bioenergy specialist and Jurkat T cells and repetitive treatments of EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 ± 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels. (Mol Cell Biochem 271: 51–59, 2005)  相似文献   

13.
ABSTRACT Trypomastigotes of Trypanosoma cruzi maintain an intracellular Ca2+ concentration([Ca2+]i) of 64 ± 30 nM. Equilibration of trypomastigotes in an extracellular buffer containing 0.5 mM [Ca2+]o (preloaded cells) increased [Ca2+]i < 20 nM whereas total cell Ca2+ increased by 1.5 to 2.0 pmole/cell. This amount of Ca2+ would be expected to increase [Ca2+]i to > 10 μM suggesting active sequestration of Ca2+. We tested the hypothesis that maintenance of [Ca2+]i involved both the sequestration into intracellular storage sites and extrusion into the extracellular space. Pharmacological probes known to influence [Ca2+]i through well characterized pathways in higher eukaryotic cells were employed. [Ca2+], responses in the presence or absence of [Ca2+]o were measured to asses the relative contribution of sequestration or extrusion processes in [Ca2+]i homeostasis. In the presence of 0.5 mM [Ca2+]o, the ability of several agents to increase [Ca2+]i was magnified in the order ionomycin ? nigericin > thapsigargin > monensin > valinomycin. In contrast, preloading markedly enhanced the increase in [Ca2+], observed only in response to monensin. Manoalide, an inhibitor of phospholipase A2, enhanced the accumulation of [Ca2+]i due to all agents tested, particularly ionomycin and thapsigargin. Our results suggest that sequestration of [Ca2+]i involved storage sites sensitive to monensin and ionomycin whereas extrusion of Ca2+ may involve phospholipase A2 activity. A Na+/Ca2+ exchange mechanism did not appear to contribute to Ca2+ homeostasis.  相似文献   

14.
The effects of extracellular Mg2+ on both dynamic changes of [Ca2+]i and apoptosis rate were analysed. The consequences of spatial and temporal dynamic changes of intracellular Ca2+ on apoptosis, in thapsigargin- and the calcium-ionophore 4BrA23187-treated MCF7 cells were first determined. Both 4BrA23187 and thapsigargin induced an instant increase of intracellular Ca2+ concentrations ([Ca2+]i) which remained quite elevated (> 150 nM) and lasted for several hours. [Ca2+]i increases were equivalent in the cytosol and the nucleus. The treatments that induced apoptosis in MCF7 cells were systematically associated with high and sustained [Ca2+]i (150 nM) for several hours. The initial [Ca2+]i increase was not determinant in the events triggering apoptosis. Thapsigargin-mediated apoptosis and [Ca2+]i rise were abrogated when cells were pretreated with the calcium chelator BAPTA. The role of the extracellular Mg2+ concentration has been studied in thapsigargin treated cells. High (10 mM) extracellular Mg2+, caused an increase in basal [Mg2+]i from 0.8 ± 0.3 to 1.6 ± 0.5 mM. As compared to 1.4 mM extracellular Mg2+, 1 M thapsigargin induces, in 10 mM Mg2+, a reduced percentage from 22 to 11% of fragmented nuclei, a lower sustained [Ca2+]i and a lower Ca2+ influx through the plasma membrane. In conclusion, the cell death induced by thapsigargin was dependent on high and sustained [Ca2+]i which was inhibited by high extracellular and intracellular Mg2+.  相似文献   

15.
Depression is associated with vascular disease, such as myocardial infarction and stroke. Pharmacological treatments may contribute to this association. On the other hand, Mg2+ deficiency is also known to be a risk factor for the same category of diseases. In the present study, we examined the effect of imipramine on Mg2+ homeostasis in vascular smooth muscle, especially via melastatin‐type transient receptor potential (TRPM)‐like Mg2+‐permeable channels. The intracellular free Mg2+ concentration ([Mg2+]i) was measured using 31P‐nuclear magnetic resonance (NMR) in porcine carotid arteries that express both TRPM6 and TRPM7, the latter being predominant. pHi and intracellular phosphorus compounds were simultaneously monitored. To rule out Na+‐dependent Mg2+ transport, and to facilitate the activity of Mg2+‐permeable channels, experiments were carried out in the absence of Na+ and Ca2+. Changing the extracellular Mg2+ concentration to 0 and 6 mM significantly decreased and increased [Mg2+]i, respectively, in a time‐dependent manner. Imipramine statistically significantly attenuated both of the bi‐directional [Mg2+]i changes under the Na+‐ and Ca2+‐free conditions. This inhibitory effect was comparable in influx, and much more potent in efflux to that of 2‐aminoethoxydiphenyl borate, a well‐known blocker of TRPM7, a channel that plays a major role in cellular Mg2+ homeostasis. Neither [ATP]i nor pHi correlated with changes in [Mg2+]i. The results indicate that imipramine suppresses Mg2+‐permeable channels presumably through a direct effect on the channel domain. This inhibitory effect appears to contribute, at least partially, to the link between antidepressants and the risk of vascular diseases.  相似文献   

16.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

17.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

18.
Gow  I.F.  Flatman  P.W.  Ellis  D. 《Molecular and cellular biochemistry》1999,198(1-2):129-133
We have examined the effect of exposing isolated rat ventricular myocytes to lithium while measuring cytosolic free magnesium ([Mg2+]i) and calcium ([Ca2+]i) levels with the fluorescent, ion sensitive probes mag-fura-2 and fura-2. There was a significant rise in [Mg2+]i after a 5 min exposure to a solution in which 50% of the sodium had been replaced by Li+, but not when the sodium had been replaced by bis-dimethylammonium (BDA). However, there were significant increases in [Ca2+]i when either Na+ substitute was used. The possibility that Li+, which enters the cells, interferes with the signal from mag-fura-2 was eliminated as Li+ concentrations up to 10 mM had no effect on the dye's fluorescence signal. A possible explanation for these findings is that Li+ displaces Mg2+ from intracellular binding sites. Having considered the binding constants for Mg2+ and Li+ to ATP, we conclude that Li+ can displace Mg2+ from Mg-ATP, thus causing a rise in [Mg2+]i. This work has implications for other studies where Li+ is used as a Na+ substitute.  相似文献   

19.
Abstract: The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an “early” Na+/Cl?-dependent component observed within minutes of glutamate exposure, and a “delayed” Ca2+-dependent component (ED50~50 µM) that coincided with progressive degeneration of granule cells 4–24 h after a brief (5–15 min) exposure to 100 µM glutamate. Quantitative analysis of cell viability and morphological observations identify a “window” in which TMB-8 (at >100 µM) protects granule cells from the Ca2+-dependent, but not the Na+/Cl?-dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

20.
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+]o) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+]i) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+]i was more sensitive to altered [Ca2+]o. The fASM [Ca2+]i responses to histamine were also more sensitive to [Ca2+]o (0–2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号