首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfiram (DSF) has found extensive use in the aversion therapy treatment of recovering alcoholics. Although it is known to irreversibly inhibit hepatic aldehyde dehydrogenase (ALDH), the specific mechanism of in vivo inhibition of the enzyme by the drug has not yet been determined. In this report, we demonstrate a novel, but simple and rapid method for structurally characterizing in vivo derived protein–drug adducts by linking on-line sample processing to HPLC-electrospray ionization mass spectrometry (HPLC-MS) and HPLC-tandem mass spectrometry (HPLC-MS/MS). Employing this approach, rats were administered DSF, and their liver mitochondria were isolated and solubilized. Both native and in vivo DSF-treated mitochondrial ALDH (rmALDH) were purified in one-step with an affinity cartridge. The in vivo DSF-treated rmALDH showed 77% inhibition in enzyme activity as compared to that of the control. Subsequently, the control and DSF-inhibited rmALDH were both subjected to HPLC-MS analyses. We were able to detect two adducts on DSF-inhibited rmALDH as indicated by the mass increases of ∼71 and ∼100 Da. To unequivocally determine the site and structure of these adducts, on-line pepsin digestion-HPLC-MS and HPLC-MS/MS were performed. We observed two new peptides at MH+=973.7 and 1001.8 in the pepsin digestion of DSF-inhibited enzyme. These two peptides were subsequently subjected to HPLC-MS/MS for sequence determination. Both peptides possessed the sequence FNQGQC301C302C303, derived from the enzyme active site region, and were modified at Cys302 by N-ethylcarbamoyl (+71 Da) and N-diethylcarbamoyl (+99 Da) adducts. These findings indicated that N-dealkylation may be an important step in DSF metabolism, and that the inhibition of ALDH occurred by carbamoylation caused by one of the DSF metabolites, most likely S-methyl-N,N-diethylthiocarbamoyl sulfoxide (MeDTC-SO).  相似文献   

2.
Disulfiram (DSF) has found extensive use in the aversion therapy treatment of recovering alcoholics. Although it is known to irreversibly inhibit hepatic aldehyde dehydrogenase (ALDH), the specific mechanism of in vivo inhibition of the enzyme by the drug has not yet been determined. In this report, we demonstrate a novel, but simple and rapid method for structurally characterizing in vivo derived protein-drug adducts by linking on-line sample processing to HPLC-electrospray ionization mass spectrometry (HPLC-MS) and HPLC-tandem mass spectrometry (HPLC-MS/MS). Employing this approach, rats were administered DSF, and their liver mitochondria were isolated and solubilized. Both native and in vivo DSF-treated mitochondrial ALDH (rmALDH) were purified in one-step with an affinity cartridge. The in vivo DSF-treated rmALDH showed 77% inhibition in enzyme activity as compared to that of the control. Subsequently, the control and DSF-inhibited rmALDH were both subjected to HPLC-MS analyses. We were able to detect two adducts on DSF-inhibited rmALDH as indicated by the mass increases of approximately 71 and approximately 100 Da. To unequivocally determine the site and structure of these adducts, on-line pepsin digestion-HPLC-MS and HPLC-MS/MS were performed. We observed two new peptides at MH(+)=973.7 and 1001.8 in the pepsin digestion of DSF-inhibited enzyme. These two peptides were subsequently subjected to HPLC-MS/MS for sequence determination. Both peptides possessed the sequence FNQGQC(301)C(302)C(303), derived from the enzyme active site region, and were modified at Cys(302) by N-ethylcarbamoyl (+71 Da) and N-diethylcarbamoyl (+99 Da) adducts. These findings indicated that N-dealkylation may be an important step in DSF metabolism, and that the inhibition of ALDH occurred by carbamoylation caused by one of the DSF metabolites, most likely S-methyl-N,N-diethylthiocarbamoyl sulfoxide (MeDTC-SO).  相似文献   

3.
Narcan, the pharmaceutical agent for the administration of naloxone, has been reported to antagonize ethanol intoxication. In addition to naloxone, Narcan contains the antioxidant esters methyl- and propylparaben. Pure naloxone and these two esters were examined for their capacity to inhibit ethanol oxidation by purified isozymes of human liver alcohol dehydrogenase (ADH). Naloxone (400 micromolar) fails completely to inactivate any of the three ADH isozyme classes. In contrast, methyl- and propylparaben, and some related esters, competitively inhibit the oxidation of ethanol and reduction of acetaldehyde by all isozymes examined. The reported effects of Narcan on ethanol-intoxicated animals or cells cannot be attributed to the action of naloxone.  相似文献   

4.
5.
6.
S U Aliyu  L Upahi 《Life sciences》1988,43(4):345-356
The role of acute ethanol (2.5 g/kg i.p.) and phenylethylamine (100 mg/kg i.p.) on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behaviour were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver whilst at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effects described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioural indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals. The results suggest that some of the toxic actions of ethanol in rats may be mediated through the activation of monoamine oxidase type B, with the consequent depletion of the endogenous levels of phenylethylamine. The data appear to support the concept of phenylethylamine involvement in affective disorders.  相似文献   

7.
The rate effects of imidazole on the EE isoenzyme of horse liver alcohol dehydrogenase have been analysed in terms of the elucidated kinetic mechanism of the enzyme. These imidazole effects on both directions of the reaction within nonexcess as well as excess ranges of substrate concentrations pointed to the competition between imidazole and ethanol for binding to the same three enzyme species in the kinetic mechanism, namely the free enzyme, the enzyme-NAD+ complex, and the enzyme-NADH complex. Moreover, both imidazole and ethanol brought about an enhancement in the rate of dissociation of NAD+ from its binding site on the enzyme.  相似文献   

8.
9.
10.
11.
D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol.  相似文献   

12.
In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these animals.  相似文献   

13.
White rats were divided into water-preferring (WP) and ethanol-preferring (EP) groups, on the basis of their preferable drink: either water or 15% solution of ethanol. Each of these groups was then subdivided into groups which were given to drink for 1 year 15% solution of ethanol (ethanol-treated) or water (controls). Alcohol dehydrogenase/aldehyde dehydrogenase activity ratios (ADH/AlDH) in livers of WP controls were considerably higher than those in EP controls. The difference in ADH/AlDH has somewhat decreased after ethanol treatment. However, this ratio remained the highest in the WP alcohol-treated group. The signs of proteinic and lipid dystrophy of the liver in alcohol-treated WP rats were expressed much more clearly than in all other groups. It is concluded that in the liver of animals with a high ADH/AlDH ratio there are favourable conditions for accumulation of a toxic hepatocyte-damaging acetaldehyde.  相似文献   

14.
Sites of glycation of human and horse liver alcohol dehydrogenase in vivo   总被引:3,自引:0,他引:3  
Sites of in vivo glycation of human and horse liver alcohol dehydrogenase were identified by cleavage of the borotritide-treated enzyme with trypsin, followed by gas-phase sequencing of the resulting tritium-labeled glycated peptides. A blank sequencing result, i.e. failure to detect an amino acid phenylthiohydantoin after completion of an Edman degradation cycle, was ascribed to an N-(1-deoxyhexitolyl)lysyl residue, which represented a glycation site on the original enzyme subunit. In human liver alcohol dehydrogenase the sites affected were the epsilon-amino groups of lysines 10, 39, 231, 248, and 325, which were glycated to the relative extents of 10, 5, 75, 5, and 5%, respectively. The site specificity of in vivo glycation of the horse enzyme is similar; 70-75% of it had occurred at lysine 231. A computer image of the crystal structure of horse liver alcohol dehydrogenase was examined. As a result, it was proposed that the high rate of glycation at lysine 231 is due to acid-base catalysis of the Amadori rearrangement by the imidazole group of histidine 348. This hypothesis was supported by showing that imidazole groups were close to sites of glycation in several other proteins.  相似文献   

15.
16.
It is shown that thiochrome inhibits alcohol dehydrogenase. Thiochrome is able to be bound with alcohol dehydrogenase more quickly than other thiamine metabolites. This process is specific and has common features with the process of NAD binding by this enzyme. The inhibition of alcohol dehydrogenase by thiochrome is concurrent to NAD. The constant of alcohol dehydrogenase inhibition by thiochrome is 3.9 x 10(-5) M.  相似文献   

17.
If liver alcohol dehydrogenase were rate-limiting in ethanol metabolism, inhibitors of the enzyme should inhibit the metabolism with the same type of kinetics and the same kinetic constants in vitro and in vivo. Against varied concentrations of ethanol, 4-methylpyrazole is a competitive inhibitor of purified rat liver alcohol dehydrogenase (Kis = 0.11 microM, in 83 mM potassium phosphate and 40 mM KCl buffer, pH 7.3, 37 degrees C) and is competitive in rats (with Kis = 1.4 mumol/kg). Isobutyramide is essentially an uncompetitive inhibitor of purified enzyme (Kii = 0.33 mM) and of metabolism in vivo (Kii = 1.0 mmol/kg). Low concentrations of both inhibitors decreased the rate of metabolism as a direct function of their concentrations. Qualitatively, therefore, alcohol dehydrogenase activity appears to be a major rate-limiting factor in ethanol metabolism. Quantitatively, however, the constants may not agree because of distribution in the animal or metabolism of the inhibitors. At saturating concentrations of inhibitors, ethanol is eliminated by inhibitor-insensitive pathways, at about 10% of the total rate at a dose of ethanol of 10 mmol/kg. Uncompetitive inhibitors of alcohol dehydrogenase should be especially useful for inhibiting the metabolism of alcohols since they are effective even at saturating levels of alcohol, in contrast to competitive inhibitors, whose action is overcome by saturation with alcohol.  相似文献   

18.
19.
Substantial evidence indicates that one consequence of alcohol intoxication is a reduction in retinoic acid (RA) levels. Studies on the mechanism have shown that chronic ethanol consumption induces P450 enzymes that increase RA degradation, thus accounting for much but not all of the observed decrease in RA. A reduction in RA synthesis may also be involved as ethanol competitively inhibits retinol oxidation catalyzed by alcohol dehydrogenase (ADH) in vitro. This may be important during acute ethanol intoxication and may contribute to adverse retinol/ethanol drug interactions. Here we have examined mice for the effect of either acute ethanol intoxication or Adh1 gene disruption on RA synthesis and degradation. RA produced following a dose of retinol (50 mg/kg) was reduced 87% by pretreatment with an intoxicating dose of ethanol (3.5 g/kg). RA produced in Adh1-null mutant mice following a 50-mg/kg dose of retinol was reduced 82% relative to wild-type mice, thus similar to wild-type mice pretreated with ethanol. Reduced RA production was associated with increased retinol levels in both ethanol-treated wild-type mice and Adh1-null mutant mice, indicating reduced clearance of the retinol dose. RA degradation following a dose of RA (10 mg/kg) was increased only 42% by ethanol pretreatment (3.5 g/kg) and only 26% in Adh1-null mutant mice relative to wild-type mice. These findings demonstrate that the reduced RA levels observed during acute retinol/ethanol drug interaction are due primarily to a decrease in ADH-catalyzed RA synthesis and secondarily to an increase in RA degradation.  相似文献   

20.
The rate-limiting step of ethanol oxidation by alcohol dehydrogenase (E) at substrate inhibitory conditions (greater than 500 mM ethanol) is shown to be the dissociation rate of NADH from the abortive E-ethanol-NADH complex. The dissociation rate constant of NADH decreased hyperbolically from 5.2 to 1.4 s-1 in the presence of ethanol causing a decrease in the Kd of NADH binding from 0.3 microM for the binary complex to 0.1 microM for the abortive complex. Correspondingly, ethanol binding to E-NADH (Kd = 37 mM) was tighter than to enzyme (Kd = 109 mM). The binding rate of NAD+ (7 X 10(5) M-1s-1) to enzyme was not affected by the presence of ethanol, further substantiating that substrate inhibition is totally due to a decrease in the dissociation rate constant of NADH from the abortive complex. Substrate inhibition was also observed with the coenzyme analog, APAD+, but a single transient was not found to be rate limiting. Nevertheless, the presence of substrate inhibition with APAD+ is ascribed to a decrease in the dissociation rate of APADH from 120 to 22 s-1 for the abortive complex. Studies to discern the additional limiting transient(s) in turnover with APAD+ and NAD+ were unsuccessful but showed that any isomerization of the enzyme-reduced coenzyme-aldehyde complex is not rate limiting. Chloride increases the rate of ethanol oxidation by hyperbolically increasing the dissociation rate constant of NADH from enzyme and the abortive complex to 12 and 2.8 s-1, respectively. The chloride effect is attributed to the binding of chloride to these complexes, destabilizing the binding of NADH while not affecting the binding of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号