首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fibrillarin is a key nucleolar protein in eukaryotes which associates with box C/D small nucleolar RNAs (snoRNAs) directing 2'-O-ribose methylation of the rRNA. In this study we describe two genes in Arabidopsis thaliana, AtFib1 and AtFib2, encoding nearly identical proteins conserved with eukaryotic fibrillarins. We demonstrate that AtFib1 and AtFib2 proteins are functional homologs of the yeast Nop1p (fibrillarin) and can rescue a yeast NOP1-null mutant strain. Surprisingly, for the first time in plants, we identified two isoforms of a novel box C/D snoRNA, U60.1f and U60.2f, nested in the fifth intron of AtFib1 and AtFib2. Interestingly after gene duplication the host intronic sequences completely diverged, but the snoRNA was conserved, even in other crucifer fibrillarin genes. We show that the U60f snoRNAs accumulate in seedlings and that their targeted residue on the 25 S rRNA is methylated. Our data reveal that the three modes of expression of snoRNAs, single, polycistronic, and intronic, exist in plants and suggest that the mechanisms directing rRNA methylation, dependent on fibrillarin and box C/D snoRNAs, are evolutionarily conserved in plants.  相似文献   

3.
The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C' and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5' cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements.  相似文献   

4.
A common maturation pathway for small nucleolar RNAs.   总被引:24,自引:7,他引:17       下载免费PDF全文
M P Terns  C Grimm  E Lund    J E Dahlberg 《The EMBO journal》1995,14(19):4860-4871
We have shown that precursors of U3, U8 and U14 small nucleolar RNAs (snoRNAs) are not exported to the cytoplasm after injection into Xenopus oocyte nuclei but are selectively retained and matured in the nucleus, where they function in pre-rRNA processing. Our results demonstrate that Box D, a conserved sequence element found in these and most other snoRNAs, plays a key role in their nuclear retention, 5' cap hypermethylation and stability. Retention of U3 and U8 RNAs in the nucleus is saturable and relies on one or more common factors. Hypermethylation of the 5' caps of U3 RNA occurs efficiently in oocyte nuclear extracts lacking nucleoli, suggesting that precursor snoRNAs are matured in the nucleoplasm before they are localized to the nucleolus. Surprisingly, m7G-capped precursors of spliceosomal small nuclear RNAs (snRNAs) such as pre-U1 and U2, can be hypermethylated in nuclei if the RNAs are complexed with Sm proteins. This raises the possibility that a single nuclear hypermethylase activity may act on both nucleolar and spliceosomal snRNPs.  相似文献   

5.
Nucleolin functions in the first step of ribosomal RNA processing.   总被引:24,自引:1,他引:23       下载免费PDF全文
H Ginisty  F Amalric    P Bouvet 《The EMBO journal》1998,17(5):1476-1486
The first processing step of precursor ribosomal RNA (pre-rRNA) involves a cleavage within the 5' external transcribed spacer. This processing requires sequences downstream of the cleavage site which are perfectly conserved among human, mouse and Xenopus and also several small nucleolar RNAs (snoRNAs): U3, U14, U17 and E3. In this study, we show that nucleolin, one of the major RNA-binding proteins of the nucleolus, is involved in the early cleavage of pre-rRNA. Nucleolin interacts with the pre-rRNA substrate, and we demonstrate that this interaction is required for the processing reaction in vitro. Furthermore, we show that nucleolin interacts with the U3 snoRNP. Increased levels of nucleolin, in the presence of the U3 snoRNA, activate the processing activity of a S100 cell extract. Our results suggest that the interaction of nucleolin with the pre-rRNA substrate might be a limiting step in the primary processing reaction. Nucleolin is the first identified metazoan proteinaceous factor that interacts directly with the rRNA substrate and that is required for the processing reaction. Potential roles for nucleolin in the primary processing reaction and in ribosome biogenesis are discussed.  相似文献   

6.
7.
We have characterized a new member (U19) of a group of mammalian small nuclear RNAs that are not precipitable with antibodies against fibrillarin, a conserved nucleolar protein associated with most of the small nucleolar RNAs characterized to date. Human U19 RNA is 200 nucleotides long and possesses 5'-monophosphate and 3'-hydroxyl termini. It lacks functional boxes C and D, sequence motifs required for fibrillarin binding in many other snoRNAs. Human and mouse RNA are 86% homologous and can be folded into similar secondary structures, a finding supported by the results of nuclease probing of the RNA. In the human genome, U19 RNA is encoded in the intron of an as yet not fully characterized gene and could be faithfully processed from a longer precursor RNA in HeLa cell extracts. During fractionation of HeLa cell nucleolar extracts on glycerol gradients, U19 RNA was associated with higher-order structures of approximately 65S, cosedimenting with complexes containing 7-2/MRP RNA, a conserved nucleolar RNA shown to be involved in 5.8S rRNA processing in yeast cells.  相似文献   

8.
Nucleolar localization of box C/D small nucleolar (sno) RNAs requires the box C/D motif and, in vertebrates, involves transit through Cajal bodies (CB). We report that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub-nucleolar structure, the nucleolar body (NB). The human survival of motor neuron protein (SMN), a marker of gems/CB, specifically localizes to the NB when expressed in yeast, supporting similarities between these structures. Box C/D snoRNA accumulation in the NB was decreased by mutation of Srp40 and increased by mutation of Nsr1p, two related nucleolar proteins that are homologous to human Nopp140 and nucleolin, respectively. Box C/D snoRNAs also failed to accumulate in the NB, and became delocalized to the nucleoplasm, upon depletion of any of the core snoRNP proteins, Nop1p/fibrillarin, Snu13p, Nop56p and Nop5p/Nop58p. We conclude that snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete snoRNP to functional sites of ribosome synthesis.  相似文献   

9.
Jády BE  Kiss T 《The EMBO journal》2001,20(3):541-551
In eukaryotes, two distinct classes of small nucleolar RNAs (snoRNAs), namely the fibrillarin-associated box C/D snoRNAs and the Gar1p-associated box H/ACA snoRNAs, direct the site-specific 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. We have identified a novel evolutionarily conserved snoRNA, called U85, which possesses the box elements of both classes of snoRNAs and associates with both fibrillarin and Gar1p. In vitro and in vivo pseudouridylation and 2'-O-methylation experiments provide evidence that the U85 snoRNA directs 2'-O-methylation of the C45 and pseudouridylation of the U46 residues in the invariant loop 1 of the human U5 spliceosomal RNA. The U85 is the first example of a snoRNA that directs modification of an RNA polymerase II-transcribed spliceosomal RNA and that functions both in RNA pseudouridylation and 2'-O-methylation.  相似文献   

10.
The review considers small nucleolar RNAs (snoRNAs), an abundant group of non-protein-coding RNAs. In association with proteins, snoRNAs determine the two most common nucleotide modifications in rRNA and some other cell RNAs: 2′-O-methylation of ribose and pseudouridylation. In addition, snoRNAs are involved in pre-mRNA cleavage and the telomerase function. Almost all snoRNAs fall into two families, C/D and H/ACA, distinguished by conserved sequence boxes. Although the proteins of C/D and H/ACA snoRNPs have homologous regions, these snoRNPs are assembled differently. The RNA components of RNases P and MRP are also classed with snoRNAs. Another problem considered is the structure and function of small RNAs from Cajal bodies (small organelles associated with the nucleoli), which are similar to snoRNAs.  相似文献   

11.
12.
13.
Small nucleolar RNAs (snoRNAs) are an abundant class of non-protein-coding RNAs. In association with proteins they perform two most frequent nucleotide modifications in rRNAs and some other cellular RNAs: 2'-O-ribose methylation and pseudouridylation. SnoRNAs also participate in pre-rRNA cleavage and telomerase functions. Most snoRNAs fall into two families, box C/D and H/ACA, distinguished by the presence of conserved sequence boxes. Although C/D and H/ACA snoRNP proteins contain homologous regions, the assembly of these RNPs significantly differ. In addition, snoRNAs include the RNA component of RNAses P and MRP. The structure and function of small RNPs from Cajal bodies (small organelles associated with nucleoli) similar to snoRNP are also discussed.  相似文献   

14.
U3 small nucleolar RNA (snoRNA) is one of the members of the box C/D class of snoRNA and is essential for ribosomal RNA (rRNA) processing to generate 18S rRNA in the nucleolus. Although U3 snoRNA is abundant, and is well conserved from yeast to mammals, the genes encoding U3 snoRNA in C. elegans have long remained unidentified. A recent RNomics study in C. elegans predicted five distinct U3 snoRNA genes. However, characterization of these candidates for U3 snoRNA has yet to be performed. In this study, we isolated and characterized four candidate RNAs for U3 snoRNA from the immunoprecipitated RNAs of C. elegans using an antibody against the 2,2,7-trimethylguanosine (TMG) cap. The sequences were identical to the predicted U3 sequences in the RNomics study. Here, we show the several lines of evidence that the isolated RNAs are the true U3 snoRNAs of C. elegans. Moreover, we report the novel expression pattern of U3 snoRNA and fibrillarin, which is an essential component of U3 small nucleolar ribonucleoprotein complex, during early embryo development of C. elegans. To our knowledge, this is the first observation of the inconsistent localization U3 snoRNA and fibrillarin during early embryogenesis, providing novel insight into the mechanisms of nucleologenesis and ribosome production during early embryogenesis.  相似文献   

15.
Methylation of the ribose 2'-hydroxyl, the most widespread modification of ribosomal and splicesomal RNAs, is guided by the box C/D class of small nucleolar RNAs (snoRNAs). Box C/D small nucleolar ribonucleoproteins (snoRNPs) contain four core proteins: fibrillarin, Nop56, Nop58 and 15.5 kDa. We constructed U25 snoRNAs containing a single photoactivatable 4-thiouridine at each U position within the conserved box C/D and C'/D' motifs. Proteins assembled on the snoRNA after injection into Xenopus oocyte nuclei were identified by cross-linking, and reconstituted particles characterized by functional rescue and mutational analyses. Our data argue that box C/D snoRNPs are asymmetric, with the C' box contacting Nop56 and fibrillarin, the C box interacting with Nop58, and the D and D' boxes contacting fibrillarin. No cross-link to 15.5 kDa was detected; its binding is disrupted by 4-thiouridine substitution in position 1 of the C box. Repositioning the guide sequence of U25 upstream of box D instead of D' revealed that both C/D motifs have the potential to function as guide centers, but, surprisingly, there was no alteration in protein cross-linking.  相似文献   

16.
17.
NOP1 is an essential nucleolar protein in yeast that is associated with small nucleolar RNA and required for ribosome biogenesis. We have cloned the human nucleolar protein, fibrillarin, from a HeLa cDNA library. Human fibrillarin is 70% identical to yeast NOP1 and is also the functional homologue since either human or Xenopus fibrillarin can complement a yeast nop1- mutant. Human fibrillarin is localized in the yeast nucleolus and associates with yeast small nucleolar RNAs. This shows that the signals within eucaryotic fibrillarin required for nucleolar association and nucleolar function are conserved from yeast to man. However, human fibrillarin only partially complements in yeast resulting in a temperature-sensitive growth, concomitantly altered rRNA processing and aberrant nuclear morphology. A suppressor of the human fibrillarin ts-mutant was isolated and found to map intragenically at a single amino acid position of the human nucleolar protein. The growth rate of yeast nop1- strains expressing Xenopus or human fibrillarin or the human fibrillarin suppressor correlates closely with their ability to efficiently and correctly process pre-rRNA. These findings demonstrate for the first time that vertebrate fibrillarin functions in ribosomal RNA processing in vivo.  相似文献   

18.
RNA B is one of three abundant trimethylguanosine-capped U small nuclear RNAs (snRNAs) of Trypanosoma brucei which is not strongly identified with other U snRNAs by sequence homology. We show here that RNA B is a highly diverged U3 snRNA homolog likely involved in pre-rRNA processing. Sequence identity between RNA B and U3 snRNAs is limited; only two of four boxes of homology conserved between U3 snRNAs are obvious in RNA B. These are the box A homology, specific for U3 snRNAs, and the box C homology, common to nucleolar snRNAs and required for association with the nucleolar protein, fibrillarin. A 35-kDa T. brucei fibrillarin homolog was identified by using an anti-Physarum fibrillarin monoclonal antibody. RNA B and fibrillarin were localized in nucleolar fractions of the nucleus which contained pre-rRNAs and did not contain nucleoplasmic snRNAs. Fibrillarin and RNA B were precipitated by scleroderma patient serum S4, which reacts with fibrillarins from diverse organisms; RNA B was the only trimethylguanosine-capped RNA precipitated. Furthermore, RNA B sedimented with pre-rRNAs in nondenaturing sucrose gradients, similarly to U3 and other nucleolar snRNAs, suggesting that RNA B is hydrogen bonded to rRNA intermediates and might be involved in their processing.  相似文献   

19.
Three human small nucleolar RNAs (snoRNAs), E1, E2 and E3, were reported earlier that have unique sequences, interact directly with unique segments of pre-rRNA in vivo and are encoded in introns of protein genes. In the present report, human and frog E1, E2 and E3 RNAs injected into the cytoplasm of frog oocytes migrated to the nucleus and specifically to the nucleolus. This indicates that the nucleolar and nuclear localization signals of these snoRNAs reside within their evolutionarily conserved segments. Homologs of these snoRNAs from several vertebrates were sequenced and this information was used to develop RNA secondary structure models. These snoRNAs have unique phylogenetically conserved sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号