首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholecystokinin represents a family of gut hormones which among other activities, have been proposed to participate in satiety signaling. Ac-CCK-7[Ac-Tyr(SO3H)-Met-Gly-Trp30-Met-Asp-Phe-NH2 (2)] possesses the full spectrum of activity and potency of the intact hormone; thus analogs of 2 may be useful as anorectic agents. A series of derivatives has been prepared in which the tryptophan indole moiety of 2 has been modified. The new compounds were assayed in CCK binding assays using homogenated rat pancreatic membranes and bovine striatum as a source of CCK-A and CCK-B receptors respectively and in vivo in rats for anorectic activity. Although previous studies have concluded that the indole ring of Trp30 is a critical pharmacophore for the interaction of CCK with both its A and B type receptors, we find 2-Nal30-Ac-CCK-7 (20) to be nearly equipotent to 2 in both CCK binding and as an anorectic agent sensitive to blockade by the Merck CCK-A receptor antagonist MK-329. The extreme structural sensitivity of this anorectic activity is illustrated by the 1-naphthylalanine30 (19) and (benzo[b]thien-2-yl)alanine30 (21) analogs which are 30 and 100 times less potent than 2 respectively. Other mono- and bicyclic Trp30 replacements, including substituted phenylalanines, 3-quinolinylalanine, and 2-(5,6,7,8-tetrahydro)naphthylalanine, gave inactive compounds.  相似文献   

2.
Competitive inhibition binding studies on membranes from the rat pancreatic AR 4-2J cell line revealed the predominance (80%) of low selectivity CCK receptors (KD of 1 nM and 4 nM for, respectively, CCK-8 and gastrin-17I (G-17I] over selective receptors (20% with a KD of 1 nM and 1 microM for, respectively, CCK-8 and G-17I). Amylase secretion was stimulated by low concentrations of CCK-8, G-17I and CCK-4. G-17I-induced amylase secretion was unaffected by 100 nM of the selective peripheral CCK-A receptor antagonist L-364,718, suggesting that amylase hypersecretion followed non-selective CCK receptor activation, a function normally assumed by selective CCK-A receptors in rat pancreatic acini. Direct ultraviolet irradiation of AR 4-2J cell membranes preloaded with 125I-BH-CCK-33 or 125I(Leu)G(2-17)I resulted in covalent cross-linking with, respectively, a 90 kDa protein and a 106 kDa protein, both distinct from the 81 kDa CCK binding species revealed in normal rat pancreatic membranes. Gpp[NH]p increased the dissociation rate of CCK-8 and G-17I from AR 4-2J cell membranes, indicating a coupling of receptors with guanyl nucleotide regulatory protein(s) G. [32P]ADP-ribosylation of AR 4-2J cell membranes allowed to detect the presence of two Gs alpha (the 50 kDa form predominating over the 45 kDa form) and one Gi alpha (41 kDa). However, Gi and Gs may not be involved in gastrin stimulation of amylase secretion, as Bordetella pertussis toxin and cholera toxin pretreatment of cells did not suppress G-17I-dependent amylase secretion.  相似文献   

3.
The sulfated tyrosine present in the sequence of CCK8 Asp26-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-PheNH2, seems to play a critical role in the recognition of CCK-A binding sites. In this work, we have investigated whether the presence of an anionic charge on the tyrosine moiety is strictly necessary and whether the sulfate moiety interacts with a divalent cation in the receptor subsite. For this purpose, the novel amino acids (L,D)Phe(p-CH2CO2H) and (L,D) Phe(p-CH2CONHOH), as well as their L-resolved forms were introduced into the sequence of Ac[X27, Nle28, Nle31]-CCK27-33 by solid phase method. The biological activities of these new derivatives were compared to two almost equiactive analogues of CCK8, Ac[Phe(p-CH2SO3H)27, Nle28, Nle31]-CCK27-33 and Boc[Nle28, Nle31]-CCK27-33 (BDNL) and to the nonsulfated analogue of the latter peptide (BDNL NS). All these new CCK-related analogues behave as agonists in stimulating pancreatic amylase release and display high affinity for brain binding sites (KI approximately 3-11 nM) but the only peptides which retain affinity for CCK-A receptors (KI approximately 20 nM) are those containing a p-carboxymethyl phenylalanine. Thus, introduction of this amino acid under an esterified form on the side chain, into specific and potent CCK-B agonists could allow compounds endowed with good bioavailabilities to be obtained.  相似文献   

4.
Most studies measuring the agonist and antagonist activities of CCK analogs and derivatives on the exocrine pancreas have been done with in vitro models. However, extrapolation to the in vivo situation may be sometimes hazardous, due to the catabolism of the peptides by circulating and tissue peptidases, and to their eventual interaction with various endogenous factors. The present experiments were organized to measure the efficacy and potency on pancreatic secretion of the rat in vivo of a series of CCK 8 analogs whose binding and activity had been previously measured on guinea-pig and rat isolated acini. The molecules tested were derivatives of Boc-(Nle 28-Nle 31)-CCK 26–33 (1), and comprised 2-phenylethylester derivatives, des-Phe derivatives, and a series of pseudo-peptides with a “reduced” bond CH2-NH replacing the peptide bond in position 28–29 to 32–33. They were perfused in anaesthetized rats, and the outputs of sodium, bicarbonate and total protein were measured. All of the derivatives studied had in vivo the same efficacy as (1) on the output of protein, and were 10 to 500 times less potent. For most compounds, the relative order of potencies measured in vivo was similar to that measured in vitro on amylase secretion by rat acini. However, the derivatives with reduced bonds in positions 28–29 and 29–30 were respectively 3 and 2 times less potent in vivo, relative to (1), while derivatives with reduced bonds in positions 30–31, 31–32 and 32–33 were 1.5 to 2.5 times more potent in vivo. The 2-phenylethylester derivatives were 7 and 9 times as potent in vitro as in vivo. The des-Phe derivative, which had in vitro antagonist properties on guinea-pig acini, and acted like a partial agonist on rat acini, was in vivo a complete agonist and was relatively 300 times as potent in vivo as in vitro. These results indicate that the metabolism of the peptides and/or their interaction with endogenous factors may change appreciably the effect of CCK derivatives on pancreatic secretion of the rat in vivo.  相似文献   

5.
1. Effect of phenylalanine (Phe) on pancreatic amylase secretion in growing chicks was investigated in four experiments. 2. In Experiment 1, birds were injected through a wing vein with 0.25 ml Phe at 0, 0.1, 0.5, 2.5 and 12.5 mM in physiological saline. No significant difference was observed in amylase secretion among treatments. 3. Effect of various concentrations of Phe with cholecystokinin (CCK, 0.31 Crick unit) on amylase secretion was investigated in Experiment 2. Amylase secretion increased with time, although no significant effect was detected in Phe treatment. 4. Efficacy of Phe and tyrosine (Tyr) injection with CCK on amylase secretion was compared. There was no significant difference between Phe and Tyr treatments. 5. Birds were injected intraperitoneally with dl-p-chlorophenylalanine (p-CP), which is an inhibitor of phenylalanine hydroxylase, or saline 1 day before the collection of pancreatic amylase in Experiment 4. Both chicks showed increased amylase secretion with CCK (0.31 Crick unit), whereas the response was at a drastically reduced rate in chicks with the p-CP treatment.  相似文献   

6.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

7.
Prior studies have shown that the cerebral cortex cholecystokinin (CCK) receptor can bind CCK and gastrin analogs with high affinity. In the present work the brain CCK receptor had approximately a three times greater affinity for CCK8 than its C-terminal tetrapeptide (CCK4) while the C-terminal tripeptide (CCK3) was 1000-fold less potent than CCK4. Thus the C-terminal tetrapeptide appears to be the minimal C-terminal CCK sequence required for high affinity binding. Since brain membranes degrade various peptides including CCK, we also evaluated the stability of CCK analogs under the conditions used to measure receptor binding by the following three methods: (1) Studies of degradation-resistant analogs in binding assays; (2) analysis of analog degradation by high performance liquid chromatography (HPLC); and (3) determination of the change in potency of CCK analogs in competitive binding studies subsequent to preincubation with brain membranes. These studies indicated that degradation of analogs by the brain membranes although significant did not account for the differences in potency of analogs in competitive binding studies. Therefore, the observed differences in potencies of the analogs tested are due to the receptor affinity and not sensitivity of the analog to degradation.  相似文献   

8.
Supramaximal doses of cholecystokinin induce in vitro submaximal biological responses, desensitization and residual stimulation. In vivo, supramaximal inhibition and oedematous pancreatitis have been reported. The aim of this study was to analyze the in vivo response of the pancreatic secretion of the rat to a wide range of doses of CCK8 and analogs prepared by alterations of the Met(28)-Gly(29) bond, a modification that may lead to potent agonists. We used Boc-[Nle28-Nle31]-CCK(26-33) (1) and derivatives of (1) with the 28-29 peptide bond replaced by CH2-NH (2), CO-CH2 (3), CH2-CH2 (4), NH-CO (5). On infusions, the ED50's (pmol/kg.min) for protein output were 4 for CCK8 and (1), 11 for (3), 40 for (2) and (4), and 860 for (5). The relative order of the in vivo potencies was near to the one determined in vitro on isolated rat acini. On bolus injections, the maximal response was observed with 300 pmol/kg of CCK8, and peaked 10-15 min after the injection. With higher doses of CCK8, the secretory peak was smaller, and was delayed relative to the moment of the injection. Supramaximal doses of CCK analogs induced the same pattern of response; however, the peak injection delay was in some cases smaller than after CCK8. Determination of the plasma CCK levels indicated that the time of peak effect after supramaximal doses of CCK8 was delayed relative to the time of effective maximal plasma CCK levels. This suggests a slow dissociation of CCK8 from one of its pancreatic binding sites in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have examined the effects of 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of 5-lipoxygenase, on the action of cholecystokinin (CCK) and other secretagogues in the stimulation of amylase secretion from dispersed rat pancreatic acini. AA861 inhibited amylase secretion caused by CCK, carbamylcholine (carbachol), bombesin or calcium ionophore A23187 but failed to affect amylase secretion by vasoactive intestinal peptide or 12-O-tetradecanoyl-phorbol 13-acetate. Inhibition by AA861 of CCK or carbachol-induced amylase secretion was confined to the relatively lower concentrations of these secretagogues. AA861 did not inhibit receptor binding of CCK or alter the cellular calcium mobilization induced by CCK. In kinetic studies, AA861 was effective only on amylase secretion from pancreatic acini incubated with CCK for more than 5 min. Indomethacin, a known inhibitor of cyclooxygenase, did not affect the amylase secretion caused by all secretagogues used. These results indicate that the 5-lipoxygenase pathway of arachidonate metabolism may be involved in the actions of calcium-dependent secretagogues of amylase secretion in rat dispersed pancreatic acini, especially for sustaining stimulation of amylase secretion by CCK.  相似文献   

10.
It has been shown that the gastrointestinal hormone cholecystokinin (CCK) induces satiety and reduces food intake in laboratory animals and humans. In the light of this evidence we studied CCK release in patients suffering from eating disorders. The secretion of CCK into the general circulation was measured in 10 anorectic, in 7 bulimic patients, and in 8 healthy controls before and after a high-caloric liquid testmeal. Baseline CCK values were similar in controls (0.6 +/- 0.2 pmol/l) and bulimics (0.6 +/- 0.1 pmol/l) and were significantly increased in the anorectic group (1.8 +/- 0.4 pmol/l) (p less than or equal to 0.005). After eating peak plasma levels increased to 6.1 +/- 0.9 pmol/l in the anorectic, to 3.8 +/- 0.5 pmol/l in the bulimic and to 2.7 +/- 0.6 pmol/l in the control group. All postprandial CCK values were significantly higher in the anorectic group. The secretion of CCK-8-S, an important peptide in the CCK family, was significantly elevated, too. This disturbed CCK secretion in patients suffering from anorexia nervosa, even if it is a secondary, diet-induced defect, may perpetuate this disorder.  相似文献   

11.
Enzyme-resistant CCK analogs with high affinities for central receptors   总被引:3,自引:0,他引:3  
Based on the results of the in vitro metabolism of CCK8 by various peptidases, we have synthesized three CCK analogs: Boc-Tyr(SO3H)-Nle-Gly-Trp-(N- Me)Nle-Asp-Phe-NH2 (compound I), Boc-Tyr(SO3H)-gNle-mGly-Trp-Nle-Asp-Phe-Nh2 (compound II), Boc-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 (compound III). In in vitro enzymatic degradation studies, these compounds showed a high stability toward either enkephalinase or the enzymes present in crude rat brain membranes preparations. Moreover, in binding studies on guinea pig tissues, these CCK-related peptides were characterized by high apparent affinities for brain CCK receptors and by a broader range of affinities for pancreatic CCK receptors. This broad range of affinities was reflected by their pharmacological potencies in the guinea pig pancreatic amylase release and ileum contraction assays. These enzyme-resistant CCK analogs provide therefore valuable tools to investigate the pharmacology of CCK.  相似文献   

12.
We examined the role of CCK-A receptors in acid inhibition by intestinal nutrients. Gastric acid and plasma CCK and gastrin levels were measured in rats with gastric and duodenal fistulas during intragastric 8% peptone and duodenal perfusion with saline, complete liquid diet (CLD; 20% carbohydrate, 6% fat, and 5% protein), and the individual components of CLD. Acid output was significantly inhibited (50-60%) by CLD, lipid, and dextrose. Plasma CCK was significantly increased by CLD (from 2.6 +/- 0.3 to 4.8 +/- 0.5 pM) and lipid (4.6 +/- 0.5 pM). CCK levels 50-fold higher (218 +/- 33 pM) were required to achieve similar acid inhibition by exogenous CCK-8 (10 nmol x kg(-1) x h(-1) iv). Intestinal soybean trypsin inhibitor elevated CCK (10.9 +/- 2.5 pM) without inhibiting acid secretion. The CCK-A antagonist MK-329 (1 mg/kg iv) reversed acid inhibition caused by CLD, lipid, and dextrose. Peptone-stimulated gastrin (21.7 +/- 1.9 pM) was significantly inhibited by CLD (14.5 +/- 3.6 pM), lipid (12.3 +/- 2.2 pM), and dextrose (11.9 +/- 1.5 pM). Lipid and carbohydrate inhibit acid secretion by activating CCK-A receptors but not by altering plasma CCK concentrations.  相似文献   

13.
We recently reported in AR42J pancreatic acinar cells that glucocorticoids increased the synthesis, cell content, and mRNA levels for amylase (Logsdon, C.D., Moessner, A., Williams, J.A., and Goldfine, I.D. (1985) J. Cell Biol. 100, 1200-1208). In addition, in these cells glucocorticoids increased the volume density of secretory granules and rough endoplasmic reticulum. In the present study we investigate the effects of glucocorticoids on the receptor binding and biological effects of cholecystokinin (CCK) on AR42J cells. Treatment with 10 nM dexamethasone for 48 h increased the specific binding of 125I-CCK. This increase in binding was time-dependent, with maximal effects occurring after 48 h, and dose-dependent, with a one-half maximal effect elicited by 1 nM dexamethasone. Other steroid analogs were also effective and their potencies paralleled their relative effectiveness as glucocorticoids. Analyses of competitive binding experiments conducted at 4 degrees C to minimize hormone internalization and degradation revealed the presence of a single class of CCK binding sites with a Kd of approximately 6 nM and indicated that dexamethasone treatment nearly tripled the number of CCK receptors/cell with little change in receptor affinity. Treatment with 10 nM dexamethasone increased both basal amylase secretion and the amylase released in response to CCK stimulation. In addition, dexamethasone increased the sensitivity of the cells to CCK. The glucocorticoid decreased the concentration of CCK required for one half-maximal stimulation of amylase secretion from 35 +/- 6 to 8 +/- 1 pM. These data indicate, therefore, that glucocorticoids induce an increase in the number of CCK receptors in AR42J cells, and this increase leads to enhanced sensitivity to CCK.  相似文献   

14.
Attempts to biochemically characterize the pancreatic cholecystokinin (CCK) receptor by affinity labeling have utilized either 125I-Bolton-Hunter-CCK-33 ("long" probes) or decapeptide analogues of the carboxyl terminus of CCK ("short" probes), and covalent attachment via the amino-terminal regions of these probes. The long probe has identified a protein of Mr = 80,000 while "shorter" probes, which have their site of cross-linking closer to the receptor binding region of the probes, have labeled a distinct protein of Mr = 85,000-95,000. To extend and complement these observations, we have designed and synthesized a new probe for the CCK receptor which incorporates a photolabile p-nitrophenylalanine moiety within the theoretical receptor-binding region of the hormone, as its carboxyl-terminal residue. This "intrinsic" photoaffinity labeling probe has been shown to possess full biological activity, with potency and efficacy in stimulating amylase secretion by dispersed rat pancreatic acini similar to that of CCK-8 (CCK-26-33). When iodinated oxidatively, this probe binds rapidly, in a temperature-dependent, reversible, saturable, specific, high affinity manner to enriched pancreatic plasma membranes. In this work, we have used this probe to specifically label the CCK binding site on rat pancreatic plasma membranes. The Mr = 85,000-95,000 protein previously identified with amino-terminal cross-linking of short probes appears to be the protein labeled with this reagent as well. This provides strong evidence that this pancreatic plasma membrane protein contains the CCK-binding domain of the CCK receptor. This intrinsic photoaffinity labeling probe should be quite useful for the characterization of the active site of this receptor and for other CCK and gastrin receptors in many species.  相似文献   

15.
Pancreatic lobules were isolated from 2 groups of male Wistar rats after 23 days of diet. A control group (C) fed on a 20% protein diet (16% gluten + 4% casein) and an experimental group (E) on a 5% protein diet (4% gluten + 1% casein). After isolation, lobules were preincubated 10 min with 10 muCi [3H]-leucine, washed, then incubate within Krebs Ringer bicarbonate Hepes. Basal secretion, then stimulated secretion (50 pM of cholecystokinin (CCK] of radioactive and non-radioactive protein and amylase outputs were measured. During basal secretion, in (E) group, lobules secreted more proteins than (C) one, the same outputs of amylase and radioactive protein were observed in both groups. The stimulated secretion by CCK increased the outputs of non-radioactive protein and amylase of lobules (T) (2-3 fold), but was without effect on lobule (E) outputs. Therefore, a low-protein diet involved a decrease of CCK sensibility on acinar cells, this fact might be mediated by a decreasing number and/or affinity of their CCK receptors.  相似文献   

16.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

17.
Dibutyryl cyclic GMP (Bu2cGMP) inhibited agonist-induced secretion of amylase from isolated rat pancreatic acini. In contrast to previous studies, this inhibitory action was not confined to butyryl derivatives of cyclic GMP, since the membrane-permeant cyclic GMP analogues Bu2cGMP and cyclic 8-bromo-GMP (8-Br-cGMP) were equipotent (IC50 2 nM) in their inhibition of amylase secretion stimulated by cholecystokinin-(26-33)-octapeptide (CCK8): at extracellular concentrations up to 1 mM, cyclic GMP itself was devoid of inhibitory activity. Both Bu2cGMP and 8-Br-cGMP also potently inhibited secretion stimulated by 4 beta-phorbol 12-myristate 13-acetate (PMA) (IC50 6 nM), but only partially inhibited responses elicited by bethanechol or bombesin and were without effect on A23187-evoked secretion. Furthermore, agents that are known to raise intracellular cyclic GMP levels (MB22948 (2-o-propoxyphenyl-8-azapurin-6-one) or nitroprusside) or antagonize the actions of protein kinase C (4 alpha-PMA or staurosporine), also inhibited CCK8- or PMA-stimulated secretion but not secretion elicited by bombesin, bethanechol, or A23187. It is concluded from these and other observations reported here that protein kinase C is the major intracellular mediator of amylase secretion stimulated by CCK8 and that this pathway may be regulated by cyclic GMP at a step that follows protein kinase C activation.  相似文献   

18.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   

19.
It has been proposed that there might be a link between the anorectic actions of cholecystokinin (CCK) and serotonin (5HT). The present study compared the patterns of c-fos protein-like immunoreactivity (FLI) induced in rat brain by CCK and the indirect 5HT agonist dexfenfluramine (DFEN), as well as the ability for devazepide, a CCK-A receptor antagonist, to antagonize both anorexia and FLI induced by these agents. Devazepide reversed the anorectic effect of CCK but not that of DFEN in food deprived rats. The FLI induced by CCK and DFEN occurred in similar brain regions, but in different subdivisions. Such regions included the bed nucleus of the stria terminalis (BST), the lateral central nucleus of the amygdala (CeL), and the lateral parabrachial nucleus (LPB). Devazepide abolished the FLI induced by CCK most of these brain regions, but had no effect on FLI induced by DFEN. These results suggest that the LPB-CeL/BST pathway might be responsible for the anorectic effects of both CCK and DFEN, but different parts or neuronal populations in these structures might be differentially engaged by CCK and DFEN. The putative interaction between CCK and 5HT might happen along this pathway, rather than in the periphery.  相似文献   

20.
Enterostatin, a pentapeptide released from the exocrine pancreas and gastrointestinal tract, selectively inhibits fat intake through activation of an afferent vagal signaling pathway. This study investigated if the effects of enterostatin were mediated through a CCK-dependent pathway. The series of in vivo and in vitro experiments included studies of 1) the feeding effect of peripheral enterostatin on Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors, 2) the effect of CCK-8S on the intake of a two-choice high-fat (HF)/low-fat (LF) diet, 3) the effects of peripheral or central injection of the CCK-A receptor antagonist lorglumide on the feeding inhibition induced by either central or peripheral enterostatin, and 4) the ability of enterostatin to displace CCK binding in a 3T3 cell line expressing CCK-A receptor gene and in rat brain sections. The results showed that OLTEF rats did not respond to enterostatin (300 microg/kg ip) in contrast to the 23% reduction in intake of HF diet in Long Evans Tokushima Otsuka (LETO) control rats. CCK (1 microg/kg ip) decreased the intake of the HF diet in a two-choice diet regime with a compensatory increase in intake of the LF diet. Peripheral injection of lorglumide (300 microg/kg) blocked the feeding inhibition induced by either near-celiac arterial or intracerebroventricular enterostatin, whereas intracerebroventricular lorglumide (5 nmol icv) only blocked the response to intracerebroventricular enterostatin but not to arterial enterostatin. Enterostatin did not bind on CCK-A receptors because neither enterostatin nor its analogs VPDPR and beta-casomorphin displaced [3H]L-364,718 from CCK-A receptors expressed in 3T3 cells or the binding of 125I-CCK-8S from rat brain sections. The data suggest that both the peripheral and central responses to enterostatin are mediated through or dependent on peripheral and central CCK-A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号