首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism.  相似文献   

2.
Shockey JM  Fulda MS  Browse J 《Plant physiology》2003,132(2):1065-1076
Acyl-activating enzymes are a diverse group of proteins that catalyze the activation of many different carboxylic acids, primarily through the formation of a thioester bond. This group of enzymes is found in all living organisms and includes the acyl-coenzyme A synthetases, 4-coumarate:coenzyme A ligases, luciferases, and non-ribosomal peptide synthetases. The members of this superfamily share little overall sequence identity, but do contain a 12-amino acid motif common to all enzymes that activate their acid substrates using ATP via an enzyme-bound adenylate intermediate. Arabidopsis possesses an acyl-activating enzyme superfamily containing 63 different genes. In addition to the genes that had been characterized previously, 14 new cDNA clones were isolated as part of this work. The protein sequences were compared phylogenetically and grouped into seven distinct categories. At least four of these categories are plant specific. The tissue-specific expression profiles of some of the genes of unknown function were analyzed and shown to be complex, with a high degree of overlap. Most of the plant-specific genes represent uncharacterized aspects of carboxylic acid metabolism. One such group contains members whose enzymes activate short- and medium-chain fatty acids. Altogether, the results presented here describe the largest acyl-activating enzyme family present in any organism thus far studied at the genomic level and clearly indicate that carboxylic acid activation metabolism in plants is much more complex than previously thought.  相似文献   

3.
A mutant Escherichia coil aspartate aminotransferase with 17 amino acid substitutions (ATB17), previously created by directed evolution, shows increased activity for beta-branched amino acids and decreased activity for the native substrates, aspartate and glutamate. A new mutant (ATBSN) was generated by changing two of the 17 mutated residues back to the original ones. ATBSN recovered the activities for aspartate and glutamate to the level of the wild-type enzyme while maintaining the enhanced activity of ATB17 for the other amino acid substrates. The absorption spectrum of the bound coenzyme, pyridoxal 5'-phosphate, also returned to the original state. ATBSN shows significantly increased affinity for substrate analogs including succinate and glutarate, analogs of aspartate and glutamate, respectively. Hence, we could cocrystallize ATBSN with succinate or glutarate, and the structures show how the enzyme can bind two kinds of dicarboxylic substrates with different chain lengths. The present results may also provide an insight into the long-standing controversies regarding the mode of binding of glutamate to the wild-type enzyme.  相似文献   

4.
Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins.  相似文献   

5.
Actinomycin synthetase I was purified to homogeneiety from actinomycin-producing Streptomyces chrysomallus. The purified enzyme is a single polypeptide chain of M(r) 45,000. It catalyzes the formation of the adenylate of 4-methyl-3-hydroxyanthranilic acid (4-MHA) from the free acid and ATP in an equilibrium reaction. 4-MHA is the precursor of the chromophoric part of actinomycin. By using the 4-MHA analogue, 4-methyl-3-hydroxybenzoic acid, as a model substrate it could be established that the equilibrium constant Keq is independent on enzyme concentration, which suggests that no stoichiometric acyladenylate-enzyme complex is formed in contrast to observations made with aminoacyl adenylates formed by aminoacyl-tRNA synthetases or multifunctional peptide synthetases. Actinomycin synthetase I does not charge itself with substrate carboxylic acid via a covalent thioester bond as is usual for amino acid activation in non-ribosomal peptide synthesis. In addition, the enzyme does not act as an acyl-coenzyme A ligase as revealed by its inability to release AMP in the presence of 4-MHA or other structurally related aromatic carboxylic acids, coenzyme A and ATP. Additional analysis of the activation reaction showed that it is exothermic, whereas the free enthalpy change delta G0 is positive due to a negative entropy change indicating a strong influence of restriction of random motion on the course of the reaction. Determinations of Km and kcat of various substrate carboxylic acids revealed the highest kcat/Km ratio for the natural substrate 4-MHA. From these properties, actinomycin synthetase I represents the prototype of novel chromophore activating enzymes involved in non-ribosomal synthesis of chromopeptide lactones in streptomycetes.  相似文献   

6.
A chiral phase HPLC method was developed for the simultaneous determination of the positional and optical isomers of the lipoxygenase-derived hydroxypolyenoic fatty acids. With a Bakerbond chiral phase HPLC column (dinitrobenzoyl phenylglycine as chiral phase) the positional and optical isomers of the reduced dioxygenation products (by triphenylphosphine or borohydride) of linoleic acid and arachidonic acid were separated after methylation of the carboxylic groups. No cumbersome chemical derivatization such as conversion to a diastereomer was necessary. As compared with the methods used up till now chiral phase HPLC proved to be simpler and more sensitive. About 10 pmol of hydroxy fatty acids suffice for an analysis. The chiral phase HPLC can be used for the preparative separation of the optical antipodes of the lipoxygenase products. An optical purity of more than 90% can be reached in one preparative run. The method was applied to the determination of the stereochemistry of the dioxygenation products of polyenoic fatty acids formed by the lipoxygenases from soybeans, reticulocytes, pea seeds (isoenzyme I and II), tomato fruits, by the quasilipoxygenase activity of hemoglobin, and by the methylene blue-mediated photooxidation of arachidonic acid.  相似文献   

7.
Substrate specificity of a dicarboxyl-CoA: dicarboxylic acids coenzyme A transferase purified from rat liver mitochondria was assayed. In addition to the previously identified substrates succinyl-CoA, 3-hydroxy-3-methylglutaryl-CoA and malonyl-CoA (Francesconi et al.(1989) Biochim. Biophys. Acta, 999, 163-170) also methylmalonyl-CoA, glutaryl-CoA and adipyl-CoA acted as enzyme substrates, with the latter thioester showing the highest apparent affinity. All corresponding dicarboxylic acids, but not oxaloacetic, citric, alpha-ketoglutaric, malic, fumaric and glutamic acids, acted as coenzyme A acceptor substrates. None of the tested monocarboxylic acids, or the corresponding coenzyme A esters, were enzymatically transformed by the here described coenzyme A transferase.  相似文献   

8.
Rat ovarian 20 alpha-hydroxysteroid dehydrogenase was shown to be effectively inhibited by adenosine derivatives, nicotinamide derivatives, NADP analogs, N-alkylammonium chlorides, and carboxylic acids through coenzyme-competitive inhibition studies. Multiple inhibition analysis was used to demonstrate either simultaneous binding of inhibitors that interact with different regions of the NADP-binding site or mutual exclusion of inhibitors that interact with the same region on the enzyme. The results of these studies demonstrated that the 2'-phosphate, the pyrophosphate, and the positively charged ring nitrogen are important features of the coenzyme structure in binding to the coenzyme-binding site of the enzyme. In addition, the presence of a hydrophobic region near the NADP-binding site was indicated by positive chainlength effects observed in the binding of nicotinamide derivatives, alkylammonium chlorides, and carboxylic acids.  相似文献   

9.
A method for the isolation of tyrosinase is described, which involves preparative polyacrylamide gel electrophoresis, requires only 24 to 36 h to carry out, and yields ostensibly homogeneous enzyme. The ability of purified tyrosinase to utilize 3,4-dihydroxyphenylalanine (dopa) analogs as cofactors was determined for both of the reactions catalyzed by tyrosinase: (i) tyrosine hydroxylation and (ii) dopa oxidation and melanin formation. The cofactor analogs studied included those in which steric modifying groups were added and those in which substitutions were made at the location of the amine, carboxylic acid, or hydroxyl groups of dopa. The results indicate that each of these groups is essential for maximal enzyme activity and that each is optimally located for tyrosinase activation when in the precise steric conformation found in l-dopa.  相似文献   

10.
Diazoniumaryl residues which are connected to the adenosine part of the coenzyme NAD+ react with amino acid residues of dehydrogenases. These coenzyme analogs bind to the active site of the enzymes. The binary complexes are stabilized by the formation of ternary dead-end complexes with pseudosubstrates. After removal of these pseudosubstrates, the coenzyme analogs remain attached in the vicinity of the active sites by azo bridges. Addition of enzyme substrates to the synthesized holoenzymes causes an immediate reduction of the covalent-bound analogs. Reoxidation can be achieved by pH changes or by addition of adequate substrates. This modification does not cause a strong loss of enzymatic activity of the enzymes. The optical properties of the holoenzymes are in accordance with that of binary NAD+ (NADH)-enzyme complexes.  相似文献   

11.
The ability of Saccharomyces cerevisiae to catalyse the reduction reaction of carboxylic acids into alcohols is described. Earlier reports have led to the characterization of the reduction of carbonyl groups into alcohols mediated by the enzyme alcohol dehydrogenase. We investigated the ability of this organism to catalyse the said conversion using the carboxylic acids, acetic acid and butyric acid. In the absence of any previous characterization, whole cell catalysis proved effective. The uptake of these acids from the medium was estimated using a plate assay method involving litmus-agar. The plate assay was found to be a convenient and extremely adaptable method for quantitation of acids in organic as well as aqueous medium. The comparison of existing paradigms in pure protein catalysis with whole cells catalysis proved anomalous. We report that it is solvent toxicity rather than hydrophobic index that correlates with the activity observed in non-aqueous conditions for whole cell biocatalysis. Reduction of acetic acid as well as butyric acid occurred, with efficiency of reaction with butyric acid being marginally higher. The reduction therefore occurs for both the short chain carboxylic acids used in this study. We therefore illustrate the reduction route of acids into alcohols and propose a model two-step pathway for the reaction. Process optimization may be further attempted to enhance the presently moderate reaction efficiencies. Steps made in the direction by studying the pH dependency and use of sacrificial substrate have yielded encouraging results.  相似文献   

12.
连接有蒸发光散射检测器的高速逆流色谱仪首次成功的应用于制备和分离青葙子中的皂苷celosins A和B.二氯甲烷∶正丁醇∶甲醇∶水(4∶0.3∶3∶2)+0.5%冰醋酸作为洗脱溶剂系统.从半制备型HSCCC收集到的组分进行HPLC分析,可以得到:celosin A纯度为98.9%,celosin B的纯度为98.1%.这是高速逆流色谱仪首次被用于纯化青葙子中的皂苷,两个化合物的结构通过碳谱和质谱来确定.  相似文献   

13.
Biomphalaria alexandrina snails play an indispensable role in transmission of schistosomiasis. Infection rates in field populations of snails are routinely determined by cercarial shedding neglecting prepatent snail infections, because of lack of a suitable method for diagnosis. The present study aimed at separation and quantification of oxalic, malic, acetic, pyruvic, and fumaric acids using ion-suppression reversed-phase high performance liquid chromatography (HPLC) to test the potentiality of these acids to be used as diagnostic and therapeutic biomarkers. The assay was done in both hemolymph and digestive gland-gonad complex (DGG) samples in a total of 300 B. alexandrina snails. All of the studied acids in both the hemolymph and tissue samples except for the fumaric acid in hemolymph appeared to be good diagnostic biomarkers as they provide not only a good discrimination between the infected snails from the control but also between the studied stages of infection from each other. The most sensitive discriminating acid was malic acid in hemolymph samples as it showed the highest F-ratio. Using the Z-score, malic acid was found to be a good potential therapeutic biomarker in the prepatency stage, oxalic acid and acetic acid in the stage of patency, and malic acid and acetic acid at 2 weeks after patency. Quantification of carboxylic acids, using HPLC strategy, was fast, easy, and accurate in prediction of infected and uninfected snails and possibly to detect the stage of infection. It seems also useful for detection of the most suitable acids to be used as drug targets.  相似文献   

14.
Baker's yeast transketolase is rapidly inactivated in the presence of carboxylic group modifiers, i.e., 1-ethyl-3(3'-dimethylaminopropyl)-carbodiimide or Woodward's reagent K. This inactivation is due to modification of the carboxylic group in the enzyme active center. The essential groups localized in the two active centers of transketolase differ in the rate of modification; accordingly, the inactivation kinetics appears as biphasic. A complete loss of the enzyme activity occurs as a result of modification of one carboxylic group per enzyme active center. The pKa value of modifiable groups is equal to about 6.5. This modification decreases by two orders of magnitude the affinity of the substrate for the active center. The carboxylic groups are not directly involved in the interaction with the substrates; their modification does not significantly affect the coenzyme binding. It is supposed that these groups are responsible for the deprotonation of the second carbon in the thiamine pyrophosphate thiazolium ring.  相似文献   

15.
Facile synthetic methods of 2′,5′-dideoxy-, 2′,3′-dideoxy- and 3′-deoxy-1,N 6-ethenoadenosine nucleosides by either an enzymatic dideoxyribosyl transfer reaction or a simple chemical reaction were proposed. The synthetic products were isolated and purified by preparative HPLC and their structures were confirmed by1H NMR (500 MHz) and FAB-MS including high resolution mass measurement. These modified nucleoside analogs have not been reported yet. Therefore, these modified nucleoside analogs are of potential value to be studied further for biological activity such as anticancer or antiviral.  相似文献   

16.
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested.  相似文献   

17.
Summary In the mitochondrial respiratory chain, coenzyme Q acts in different ways. A diffusable coenzyme Q pool as a common substrate-like intermediate links the low-potential complexes with complex III. Its diffusion in the lipids is not rate-limiting for electron transfer, but its content is not saturating for maximal rate of NADH oxidation. Protein-bound coenzyme Q is involved in energy conservation, and may be part of enzyme supercomplexes, as in succinate cytochromec reductase. The reason for lack of kinetic saturation of the respiratory chain by quinone concentration is in the low extent of solubility of monomeric coenzyme Q in the membrane lipids. Assays of respiratory enzymes are performed using water soluble coenzyme Q homologs and analogs; several problems exist in using oxidized quinones as acceptors of coenzyme Q reductases. In particular, for complex I no acceptor appears to favorably substitute the endogenous quinone. In addition, quinone reduction sites in complex III compete with the sites in the dehydrogenases, particularly when using duroquinone. The different extent by which these sites operate when different donor substrates (NADH, succinate, glycerol-3-phosphate) are used is best explained by different exposure of the quinone acceptor sites in the dehydrogenases.  相似文献   

18.
Fourteen tryptophan-containing cyclic dipeptides 1a-14a, including all four stereoisomers of cyclo-Trp-Pro and cyclo-Trp-Ala, were converted to their C2-regularly prenylated derivatives 1b-14b in the presence of dimethylallyl diphosphate by using the purified recombinant FtmPT1 as catalyst. The enzyme products were isolated on HPLC in preparative scales and their structures were elucidated by NMR and MS analyses. The cytotoxic effects of the prenylated products and their substrates were tested with human leukemia K562 and ovarian cancer A2780 sens and A2780 CisR cell lines. Preliminary results have been clearly shown that prenylation at C2 led to a significant increase of the cytotoxicity of the tested cyclic dipeptides in all the 14 cases. The second amino acid and the stereochemistry of tryptophan moiety of the cyclic dipeptides showed less influence on the cytotoxicity of the tested compounds.  相似文献   

19.
(a) The reactivity of substituted acetates as substrates for CoA transferase increases sharply with increasing basicity and exhibits a slope of 1.0 in a plot of either log kappacat or log (kappacat/Km) against pKa (betanuc = 1.0). This result shows that the catalyzed reaction, which involves both carboxylate activation and leaving group transfer, does not proceed through a fully concerted reaction mechanism in the rate-determining step. The result is consistent with a stepwise reaction mechanism that proceeds through an anhydride intermediate. (b) Equilibrium constants for thiol ester formation, either bound to the enzyme or free in solution, show the same dependence on the basicity of carboxylate ions (betaeq = 1.0) and are independent of acidity when expressed in terms of the carboxylic acid. Thus, the polar environment around substituents on the acyl group is the same for carboxylic acids, thiol esters, and oxygen esters. (c) The interaction of the terminal CH3CO group of acetoacetate with the active site causes a 200,000-fold increase in kappacat/Km, corresponding to a decrease in delta G++ OF 7.2 kcal/mol compared with an unsubstituted acid of the same pK. The binding energy of the coenzyme A moiety of the substrate is utilized to interact with the active site and cause a 10(4) to 10(6)-fold increase in kappacat, corresponding to a decrease in delta G++ of 6 to 9 kcal/mol, compared with fragments of the coenzyme A moiety added separatly or together. (d) The exchange of labeled coenzyme A into acyl-CoA substrates was found to be greater than or equal to 10(5) slower than substrate turnover.  相似文献   

20.
A method has been developed for the purification of small quantities of acetic acid from bacteria. The acetic acid, with added carrier and a second isotopic species as an internal standard, was extracted into diethyl ether, the benzyl ester was formed using diazotoluene (phenyldiazomethane) and the resultant benzyl acetate purified by small-scale preparative gas-liquid chromatography on a nonpolar stationary phase. Overall recoveries were in the range 26–40%. The method was extended to show the feasibility of the preparative purification of other short chain acids, and also for the analysis of C1 to C10 acids, as their benzyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号