首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In quiescent cultures of Swiss 3T3 cells, platelet-derived growth factor or fibroblast growth factor known to induce both protein kinase C activation and Ca2+ mobilization raised c-fos mRNA. This action of the growth factors was mimicked by the specific activators for protein kinase C, such as phorbol esters and a membrane-permeable synthetic diacylglycerol, and also by the Ca2+ ionophores, such as A23187 and ionomycin. Prostaglandin E1 known to elevate cyclic AMP also raised c-fos mRNA, and this action was mimicked by 8-bromo-cyclic AMP, dibutyryl cyclic AMP and forskolin. These results suggest that expression of the c-fos gene is regulated by three different intracellular messenger systems, protein kinase C, Ca2+ and cyclic AMP, in Swiss 3T3 cells.  相似文献   

2.
Serum mitogens, fibroblast growth factor (FGF), and type beta transforming growth factor (TGF-beta) suppress differentiation of the mouse muscle cell line BC3H1; however, the signal transduction pathways whereby these growth factors exert their effects on this system are unknown. The goal of this study was to determine whether the program for differentiation of BC3H1 cells was susceptible to negative regulation by signaling pathways involving cAMP or protein kinase C and whether these intracellular effectors participate in the mechanism by which growth factors prevent establishment of the myogenic phenotype. Exposure of BC3H1 cells to dibutyryl cAMP, 8-bromo-cAMP, or compounds that stimulate adenylate cyclase, i.e. forskolin, prostaglandin E1, and cholera toxin, prevented up-regulation of muscle-specific gene products following growth arrest in mitogen-deficient medium. Conversely, addition of cAMP to differentiated BC3H1 myocytes caused down-regulation of muscle-specific mRNAs. In contrast to the ability of cAMP to block differentiation, chronic exposure to O-tetradecanoylphorbol-13-acetate, the potent activator of protein kinase C, exhibited no apparent effects on expression of muscle-specific gene products. The proto-oncogenes c-myc and c-fos were up-regulated rapidly by cAMP in a manner similar to that observed previously by serum, FGF, and TGF-beta. However, these growth factors failed to increase intracellular cAMP levels, and they did not induce ornithine decarboxylase, which was subject to positive regulation by cAMP and O-tetradecanoyl-13-acetate. Together, these data indicate that differentiation of BC3H1 cells is subject to negative regulation through a cAMP-dependent pathway and that serum mitogens, FGF, and TGF-beta inhibit differentiation through a mechanism independent of cAMP or protein kinase C.  相似文献   

3.
Bombesin is a potent mitogen for Swiss 3T3 cells and can stimulate DNA synthesis in the absence of any other growth factor. This effect is mediated by multiple synergistic signaling pathways, including an accumulation of intracellular cyclic AMP (cAMP) and an increase in c-fos mRNA expression. The cyclooxygenase inhibitor indomethacin abolished prostaglandin E2 release and substantially depressed cAMP levels induced by bombesin (EC50 congruent to 10 nM). In contrast, indomethacin at 1 microM did not affect 80K phosphorylation or Ca2+ mobilization by bombesin, indicating that cAMP synthesis can occur through a phospholipase C-independent pathway. Indomethacin caused a 30 to 35% decrease in c-fos induction and DNA synthesis in cells treated with bombesin (EC50 congruent to 40 nM). Significantly, the inhibitory effect of indomethacin was reversed in the presence of forskolin, a direct activator of adenylate cyclase. We conclude that cAMP plays a regulatory role in c-fos induction and mitogenesis in Swiss 3T3 cells treated with bombesin.  相似文献   

4.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

5.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

6.
Polypeptide growth factors that stimulate cell proliferation bind to cell surface receptors and activate intracellular signal transduction pathways. One major signalling pathway, initiated by phosphatidylinositol (PI) turnover, involves activation of protein kinase C. Some polypeptide growth factors, including mitogens that activate protein kinase C, induce a rapid increase in expression of the proto-oncogenes, c-myc and c-fos. In order to characterize the signal transduction pathways responsible for proto-oncogene activation, we treated Swiss 3T3 cells with the tumor promoter phorbol dibutyrate to generate cells deficient in protein kinase C. These cells were then stimulated with platelet extract, bombesin, or epidermal growth factor (EGF) and the levels of c-myc and c-fos mRNA were determined. Platelet extract or bombesin, which stimulate PI turnover, were substantially weaker inducers of c-myc and c-fos mRNA levels in the protein kinase C-depleted cells, although some variability with platelet extract was noted. EGF, which does not stimulate PI turnover in several cell systems, was by contrast a potent inducer of both proto-oncogenes whether or not the cells were deficient in protein kinase C. Pretreatment of cells with phorbol dibutyrate caused little or no change in the basal levels of c-myc or c-fos mRNA, but led to a small but significant increase in basal levels of ornithine decarboxylase mRNA. These results demonstrate that EGF and growth factors that activate PI turnover induce expression of the c-myc and c-fos proto-oncogenes through different pathways.  相似文献   

7.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

8.
Production of cAMP in response to adenosine A2 or prostaglandin E1 receptor stimulation was, but the production induced by a beta-adrenergic agonist or forskolin was not, enhanced by prior exposure of Swiss 3T3 fibroblasts to agonists of Ca2+-mobilizing receptors or phorbol ester for 3 h. The enhancement reflected potentiation of the receptor-coupled activation of adenylate cyclase and the 2-fold increase in the adenosine A2 receptor number in membranes under these conditions. No enhancement was observed, however, when the medium used for the prior exposure was further supplemented with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or staurosporin, inhibitors of protein kinase C, neither of which affected the cAMP responses of the nonexposed cells. It is very likely, therefore, that activation of protein kinase C triggers the increase in certain receptor density in membranes, thereby enhancing the receptor-coupled cAMP-generating responses. The physiological significance of such cross-talk between cellular signaling systems is discussed in comparison with similar previous observations.  相似文献   

9.
The addition of platelet-derived growth factor and fibroblast growth factor to quiescent cultures of Swiss 3T3 fibroblasts rapidly induced protein kinase C activation and Ca2+ mobilization and afterwards markedly increased c-myc mRNA levels. 1-Oleoyl-2-acetylglycerol, a membrane-permeable synthetic diacylglycerol, and 12-O-tetradecanoylphorbol 13-acetate, a tumor-promoting phorbol ester, stimulated protein kinase C activation without Ca2+ mobilization. Inversely, Ca2+ ionophores, A23187 and ionomycin, elicited Ca2+ mobilization without protein kinase C activation. Both protein kinase C-activating and Ca2+-mobilizing agents were able to increase c-myc mRNA levels in an additive manner. Prolonged treatment of the cells with phorbol 12,13-dibutyrate, another protein kinase C-activating phorbol ester, led to the down-regulation and complete disappearance of protein kinase C. In these cells, 1-oleoyl-2-acetylglycerol and 12-O-tetradecanoylphorbol 13-acetate did not increase c-myc mRNA levels, but platelet-derived growth factor, fibroblast growth factor, and the Ca2+ ionophores, all of which still induced Ca2+ mobilization, stimulated the increase of c-myc mRNA levels. These results strongly suggest that both protein kinase C and Ca2+ may be involved in platelet-derived growth factor- as well as fibroblast growth factor-induced expression of the c-myc oncogene in Swiss 3T3 cells.  相似文献   

10.
Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.  相似文献   

11.
Calcitonin gene-related peptides I and II (CGRP I and II) were found to stimulate cAMP levels by approximately 4-6 fold in human nonpigmented ciliary epithelial cells with half-maximal effective concentrations of 20 x 10(-10) and 3 x 10(-10) M, respectively. Prior exposure of cells to 6 x 10(-7) M phorbol 12-myristate, 13-acetate for 15 min resulted in a 40-50% inhibition of CGRP II-dependent cAMP stimulation. Phorbol didecanoate and dioctanoylglycerol also effectively inhibited, whereas 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C, had no effect. Staurosporine, a protein kinase C inhibitor, blocked the inhibition of cAMP formation by phorbol esters. cAMP stimulation by forskolin or cholera toxin was not inhibited by phorbol esters, suggesting that neither a Gs protein nor adenylyl cyclase is the site of inhibition by protein kinase C. These data therefore suggest that CGRP receptors are required for inhibition of adenylate cyclase by protein kinase C.  相似文献   

12.
In this report, we demonstrate that calcium and phorbol esters enhance cAMP production in GH4C1 cell homogenates. The mechanism for this is a reduction in the rate of decay of adenylate cyclase activity over the course of the assay. Purified protein kinase C can reconstitute calcium- and phorbol ester-dependent adenylate cyclase. Phorbol ester-activated protein kinase C increases both the initial rate of cAMP synthesis and reduces the time-dependent decay of adenylate cyclase activity in membrane preparations. The rate of cAMP production is fit to an equation derived from a model which assumes that adenylate cyclase initially exists in a high activity state which decays exponentially into a low activity state. We suggest that protein kinase C can both prevent the decay of the high activity state and convert the low activity state into the high activity state.  相似文献   

13.
Our previous work demonstrated that NIH-3T3 cells expressing high levels of the mutated cellular ras oncogene (EJ-ras gene) exhibited reduced hormone-sensitive adenylate cyclase and platelet-derived growth factor-stimulated (PDGF) phospholipase A2/C activities. We now report that although the ras-transformed cells display markedly reduced phospholipase C activity, as measured by the levels of inositol 1,4,5-trisphosphate synthesized after PDGF-stimulation, normal levels of phospholipase A2 activity can be uncovered; thus, similar levels of prostaglandin E2 were synthesized in EJ-ras transformed and control cells after stimulation with phorbol myristate acetate (PMA) and/or the calcium ionophore A-23187, agents which stimulate protein kinase C and intracellular Ca2+ levels, respectively. These data suggest that the EJ-ras gene product uncouples the PDGF receptor from the phospholipase C, resulting in reduced PDGF-stimulated Ca2+ mobilization, protein kinase C stimulation and an apparent decrease in Ca2+-dependent phospholipase A2.  相似文献   

14.
Glial fibrillary acidic protein (GFAP) is expressed upon cAMP-mediated induction of differentiation of glial progenitor cells into type II astrocytes. The protein is regulated by hormones, growth factors and cytokines but the signal transduction pathways involved in the regulation of GFAP expression are largely unknown. Specific protein kinase inhibitors were used to study their effect on the expression of GFAP in rat C6 glioma cells. Herbimycin A, a selective protein tyrosine kinase inhibitor, reduced GFAP mRNA and protein expression upon cAMP analog or beta-adrenergic receptor-mediated induction of differentiation. The latter inhibitor attenuated the elevation of cAMP by adenylate cyclase and abolished the activity of phosphatidylinositol 3-kinase (PI 3-K). These data indicate that GFAP expression is regulated by protein tyrosine phosphorylations, modulating the cAMP concentration and PI 3-K activity in C6 glioma cells.  相似文献   

15.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

16.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

17.
The B subunit of cholera toxin, which binds specifically to ganglioside GM1, stimulates DNA synthesis in quiescent Swiss 3T3 fibroblasts grown in chemically defined medium. The mitogenic response to the B subunit was potentiated by insulin and other growth factors. To elucidate the mechanism by which the B subunit stimulates cell growth , its effects on several transmembrane signaling systems which have been suggested to play a vital role in cell growth regulation were examined. The B subunit did not increase cAMP levels nor activate adenylate cyclase. The B subunit induced a rapid and profound increase in intracellular free Ca2+ as measured with the fluorescent Ca2+-sensitive dye quin 2/AM. Removal of external Ca2+ completely inhibited the signal, thus suggesting that the B subunit elevates intracellular Ca2+ through a net influx of extracellular Ca2+ rather than by causing the release of Ca2+ from intracellular stores. These findings are consistent with the observations that the B subunit induced reinitiation of DNA synthesis without activation of phospholipase C. There was no increase in the formation of inositol trisphosphate, the second messenger that mediates release of Ca2+ from intracellular stores. In addition, the B subunit still stimulated DNA synthesis in Swiss 3T3 cells pretreated with phorbol ester to down-regulate protein kinase C. These results suggest that the mitogenic effects of the B subunit are mediated mainly by facilitation of Ca2+ influx and that activations of adenylate cyclase, phospholipase C, or protein kinase C are not obligatory steps in the initiation of cell growth by the B subunit. Furthermore, the observation that Ca2+ ionophores, such as ionomycin and A23187, are not mitogenic implies that additional undefined growth signaling pathways may exist in this system.  相似文献   

18.
19.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

20.
We have shown that the cultured Sertoli cell from the immature rat contains a fibroblast growth factor (FGF)-like factor. It behaves as a cationic peptide, is a potent competence factor for BALB/c3T3 mouse embryo fibroblasts, and displays a high affinity for heparin. Both bovine basic FGF and Sertoli cell FGF-like factor rapidly increase c-fos mRNA in cultured Sertoli cells. FSH, serum, and phorbol esters individually stimulate c-fos in cultured Sertoli cells whereas platelet-derived growth factor, epidermal growth factor, and insulin-like growth factor-I have little affect. However, unlike FSH, basic FGF does not stimulate an increase in cAMP and unlike either serum or phorbol esters, basic FGF does not stimulate phosphoinositol turnover or intracellular calcium changes. When Sertoli cell protein kinase C activity is suppressed by preexposure to phorbol ester, basic FGF continues to be a potent stimulator of c-fos, indicating that the calcium/phospholipid pathway is not involved in FGF induction. Basic FGF and FSH also increase jun-B mRNA levels in cultured Sertoli cells. In response to FGF, jun-B is more transiently increased than c-fos. In contrast, in response to FSH, jun-B persists longer than c-fos. These results indicate that cultured Sertoli cells contain a FGF-like factor that increases c-fos mRNA via a mechanism not involving cAMP and the calcium/phospholipid pathways. The different responsiveness of c-fos and jun-B to FSH and basic FGF may explain differences in the ultimate actions of these two ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号