首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many selenoorganic compounds play an important role in biochemical processes and act as antioxidants, enzyme inhibitors or drugs. The effects of a new selenocompound — bis(2-aminophenyl)-diselenide on oxidative/nitrative changes in human plasma proteins induced by peroxynitrite (ONOO) were studied in vitro and compared with the those of ebselen, a well-known antioxidant. We also studied the role of the tested selenocompounds in peroxynitrite-induced plasma lipid peroxidation. Exposure of the plasma to peroxynitrite (0.1 mM) resulted in an increase in the level of carbonyl groups and nitrotyrosine residues in plasma proteins (estimated using the ELISA method and Western blot analysis). In the presence of different concentrations (0.025–0.1 mM) of the tested selenocompounds, 0.1 mM peroxynitrite caused a distinct decrease in the level of carbonyl group formation and tyrosine nitration in plasma proteins. Moreover, these selenocompounds also inhibited plasma lipid peroxidation induced by ONOO−1 (0.1 mM). The obtained results indicate that in vitro bis(2-aminophenyl)-diselenide and ebselen have very similar protective effects against peroxynitrite-induced oxidative/nitrative damage to human plasma proteins and lipids.  相似文献   

2.
Pycnogenol (PYC), a procyanidin-rich extract of French maritime pine bark (Pinus pinaster) has strong antioxidant potential and promotes cellular health. The aim of this study was to investigate a possible cooperation of natural antioxidant PYC with synthetic antioxidants ascorbic acid and trolox in the model system of lipid peroxidation determined as conjugated dienes formation in liposomes and on the oxidation of proteins (in BSA and plasma proteins) determined as protein carbonyls. The present study shows that PYC and trolox significantly increased inhibition of lipid peroxidation initiated by copper acetate and tert-butylhydroperoxide in concentration and time dependence compared with untreated unilamellar liposomes. PYC and trolox added simultaneously to the oxidized liposomes exerted an additive preventive effect. PYC s inhibitory effect on formation of carbonyl compounds in BSA and plasma proteins, oxidized by two oxidative systems--H2O2/FeSO4 and HOCl, were studied in co-operation with other synthetic antioxidants--ascorbic acid and trolox. We found the synergistic or additive effect of PYC with mentioned antioxidants.  相似文献   

3.
The ability of the redox cycling compound, diquat, to induce lipid peroxidation and oxidative damage was investigated using hepatic microsomes. Antioxidants, with demonstrated efficacy in physical models of oxidative stress, were examined in a diquat model. Diquat (10 microM-3 mM) induced lipid peroxidation (TBARS) in hepatic microsomes prepared from Fischer 344 rats. Diquat (1 mM) also increased protein carbonyl formation, NADPH oxidation and superoxide anion radical production (acetylated cytochrome c reduction). The novel antioxidants U-74,006F, U-78,517G and the known antioxidant, DPPD, decreased diquat-induced lipid peroxidation to levels below that of the control. These antioxidants also decreased protein carbonyl formation caused by diquat. U-74,006F and U-78,517G reduced NADPH oxidation slightly; although this inhibition was statistically significant, the biological significance is questionable. DPPD had no effect on this parameter. U-78,517G inhibited the reduction of acetylated cytochrome c slightly, whereas the other antioxidants had little effect. Thus overall, the increase in NADPH oxidation and the production of superoxide anion by redox cycling of diquat were not substantially affected by antioxidants. Neither did the test compounds show evidence of activity as iron chelators. This leads to the suggestion that antioxidants are preventing diquat-induced oxidative damage by scavenging lipid peroxyl radicals and preventing the propagation of the lipid peroxidation process.  相似文献   

4.
Summary

Exposure of human plasma to gas-phase cigarette smoke (CS) causes loss of human plasma antioxidants, protein modification (Frei et al, Biochem J, 1991 277:133–138; Reznick et al, Biochem J, 1992 286: 607–611) and a minimal amount of lipid oxidation. Ascorbic acid was found to prevent CS-induced lipid peroxidation and glutathione (GSH) partially protected against protein modification, as determined by loss of protein -SH groups and by increases in carbonyl content as a measure of protein oxidation. In the present study we demonstrate that dihydrolipoic acid (0.25–1.0 mM) decreases CS-induced protein carbonyls, α-tocopherol loss, and lipid hydroperoxide formation in plasma. In contrast GSH (1 mM) failed to influence CS-induced loss of α-tocopherol, and was 50% as effective as dihydrolipoate in protecting against CS-induced protein carbonyl formation. On the other hand, lipoic acid (oxidized form of dihydrolipoic acid) and oxidized glutathione (GSSG) had minimal effect in protecting against the CS-induced protein modifications. These findings demonstrate that low molecular weight thiols are capable of modifying the effect of gas-phase CS on biological fluids. Dihydrolipoate appears to be particularly useful in that it was shown to conserve ascorbic acid and α-tocopherol, i.e. supporting the antioxidant network concept in protection against protein and lipid oxidation.  相似文献   

5.

The conditions for producing phosphatidylcholine liposomes containing lipoic acid and carnosine together were determined. The obtained liposomes are 180–250-nm spherical particles with an efficiency of lipoic acid inclusion of 50–70% (for carnosine, 17–33%). Based on the model of the oxidation of phosphatidylcholine by hydrogen peroxide, an antioxidant effect of carnosine, lipoic acid or lipoic acid with carnosine together was demonstrated; it consisted in inhibition of lipid peroxidation process, which was manifested in a decrease in the formation of lipid peroxidation products that react with thiobarbituric acid. It was established that lipoic acid (5 mM) and carnosine (0.1–10 mM) in liposomes exhibit an antioxidant effect. At the same time, it was demonstrated that the content of the appropriate lipid peroxidation products in liposomes with antioxidants (lipoic acid + carnosine) was 15 times lower than in control liposomes (without antioxidants). The effect of the obtained liposomal drugs on the platelet aggregation induced by arachidonic acid was evaluated. It was found that the liposomal drug containing lipoic acid (1.5 mM) and carnosine (2.1 mM) inhibited platelet aggregation by 50–55% relative to the control (platelets and arachidonic acid), while liposomes without antioxidants and water-soluble forms of carnosine and lipoic acid had almost no effect on platelet aggregation caused by arachidonic acid.

  相似文献   

6.
Reactive oxygen species (ROS) could be important causative agents of a number of human diseases, including cancer. Thus, antioxidants, which control the oxidative stress state, represent a major line of defense regulating overall health. Human plasma contains many different nonenzymatic antioxidants. Because of their number, it is difficult to measure each of these different antioxidants separately. In addition, the antioxidant status in human plasma is dynamic and may be affected by many factors. Thus, the relationship between nonenzymatic antioxidant capacity of plasma and levels of well-known markers of oxidative stress (oxidized proteins, lipid hydroperoxides, decreases in thiol groups) better reflects health status. The present study considers antioxidant capacity and oxidative stress in human plasma of patients with colon cancer or precancerous lesions, as well as before and after surgical removal of tumors and/or chemo/radiation therapy. Healthy blood donors were used as controls. Colon cancer patients demonstrated a significant decrease in nonproteic antioxidant status and in total thiol groups with respect to healthy controls, whereas oxidized proteins and lipid hydroperoxide levels were significantly increased. In patients with precancerous lesions, the only unmodified parameter was the thiol group level. After surgery, the levels of oxidized proteins, lipid hydroperoxides, and total thiol groups were restored to those seen in healthy subjects, whereas nonproteic antioxidant capacity remained unmodified from that determined before surgery. Conversely, chemo/radiation therapy increased both nonproteic antioxidant capacity and levels of oxidized proteins and lipid hydroperoxides and significantly decreased total thiol groups. These results further support the hypothesis that oxidative stress correlates to the risk of some forms of cancer, not only in the initial stages but also during progression.  相似文献   

7.
In crude synaptosomal fractions from rat brain exposed to iron and ascorbate, enhanced lipid peroxidation (more than 3-fold compared to control), loss of protein thiols up to the extent of 40% compared to control, increased incorporation of carbonyl groups into proteins (more than 4.5-fold compared to control) and non-disulphide covalent cross-linking of membrane proteins have been observed. The phenomena are not inhibited by catalase or hydroxyl radical scavengers like mannitol or dimethyl sulphoxide. However, chain breaking antioxidants like alpha-tocopherol and butylated hydroxytoluene prevent both lipid peroxidation and accompanying protein oxidation. It is suggested that in this system lipid peroxidation propagated by the decomposition of preformed lipid hydroperoxides by iron and ascorbate is the primary event and products of the peroxidation process cause secondary protein damage. In view of high ascorbate content of brain and availability of several transition metals, such ascorbate mediated oxidative damage may be relevant in the aetiopathogenesis of several neurodegenerative disorders as well as ageing of brain.  相似文献   

8.
Cai W  Zhang L  Song Y  Zhang B  Cui X  Hu G  Fang J 《Free radical research》2011,45(11-12):1379-1387
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a naturally occurring polyphenol widely distributed in food and dietary plants. This phytochemical has been intensively studied as an efficient antioxidant and anticancer agent, and a variety of substituted stilbenes have been developed in order to improve the potency of resveratrol. In this work, we described the synthesis of 3,4,4 -trihydroxy-trans-stilbene (3,4,4'-THS), an analogue of resveratrol, and studied its antioxidant and cytotoxic activity in vitro. 3,4,4 -THS was much more efficient than resveratrol in protecting against free radical-induced lipid peroxidation, photo-sensitized DNA oxidative damage, and free radical-induced hemolysis of human red blood cells. More potent growth inhibition in cultured human leukemia cells (HL-60) was also observed for 3,4,4 -THS. The relationship between the antioxidant efficiency and cytotoxic activity was discussed, with the emphasis on inhibition of the free radical enzyme ribonucleotide reductase by antioxidants. The result that this subtle structure modification of resveratrol drastically improves its bioactivity provides important strategy to develop novel resveratrol-based molecules.  相似文献   

9.
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.  相似文献   

10.
Lung epithelial lining fluid (ELF) is a thin layer of plasma ultrafiltrate and locally secreted substances that may provide antioxidant protection and serve as a "front-line" defense for the lower respiratory tract epithelium. To characterize the antioxidant properties of ELF, young, healthy, nonsmoking volunteers underwent bronchoalveolar lavage with determination of ELF volumes and ELF proteins. ELF (greater than 0.4 ml) is a potent inhibitor of lipid peroxidation as measured by malondialdehyde (MDA) production in an in vitro iron-dependent assay system. Two serum proteins, transferrin and ceruloplasmin, were quantitated in ELF and found to be potent inhibitors of lipid peroxidation. Other ELF components, including vitamin E, vitamin C, and albumin, did not function as antioxidants in this system. Several experimental observations suggest that ELF transferrin was more important than ceruloplasmin in inhibiting lipid peroxidation: 1) ELF concentrations of transferrin were 20-fold higher than those for ceruloplasmin; 2) ELF antioxidant activity was abolished by preincubation with Fe3+; 3) ELF antioxidant activity was minimally affected by sodium azide, which is known to inhibit ceruloplasmin ferroxidase activity; and 4) ELF ceruloplasmin ferroxidase activity was virtually nondetectable. ELF possesses a significant antioxidant activity that may be important in vivo in protecting the lung from oxidant injury.  相似文献   

11.
Vitamin A (retinol) and some of its analogs exhibited varying degrees of inhibition on induced iron and ascorbic acid lipid peroxidation of rat brain mitochondria. Malonyldialdehyde production was used as an index of the extent of in vitro lipid peroxidation. The fat-soluble vitamins retinol, retinol acetate, retinoic acid, retinol palmitate, and retinal at concentrations between 0.1 and 10.0 mmol/L inhibited brain lipid peroxidation. Retinol and retinol acetate were the most effective inhibitors. It is concluded from this study that retinol and its analogs can be considered as potential antioxidant factors, more potent than some of the well-known antioxidants such as alpha-tocopherol and butylated hydroxytoluene.  相似文献   

12.
An important aspect of bacterial mutagenesis by several difunctional carbonyl compounds appears to be the induction of the SOS system. We tested the ability of a series of carbonyl compounds to induce expression of the SOS-regulated umu operon in Salmonella typhimurium TA1535/pSK1002. SOS-inducing potencies varied widely among the carbonyl compounds tested. 4-Hydroxynonenal, a product of lipid peroxidation, was the most potent SOS-inducer, with maximal induction observed at concentrations of 0.1-1 microM. Acrolein, crotonaldehyde and methacrolein induced little increase over background umu expression. Malondialdehyde, another product of lipid peroxidation, was a very weak SOS-inducer with a maximal response induced at a concentration of 28 mM. Substitution at the alpha-position of malondialdehyde, which abolishes frameshift mutagenicity, did not abolish SOS-inducing activity. Substitution of the hydroxyl group of malondialdehyde and alpha-methyl-malondialdehyde by a better leaving group (benzoyloxy) resulted in an approximately 250-fold higher SOS-inducing potency. Comparison of the present results to literature reports on bacterial mutagenicity indicates a poor correlation of the two properties between different classes of difunctional carbonyl compounds and even within the same class of difunctional carbonyl compounds.  相似文献   

13.
Resveratrol (3,5,4'-trans-trihydroxystibene) is a natural phytoalexin present in grapes and red wine, which possesses a variety of biological activities including antioxidative activity. To find more active antioxidants, with resveratrol as the lead compound, we synthesized resveratrol analogues, i.e., 3,4,3',4'-tetrahydroxy-trans-stilbene (3,4,3',4'-THS), 3,4,4'-trihydroxy-trans-stilbene (3,4,4'-THS), 2,4,4'-trihydroxy-trans-stilbene (2,4,4'-THS), 3,3'-dimethoxy-4,4'-dihydroxy-trans-stilbene (3,3'-DM-4,4'-DHS), 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 3,5-dihydroxy-trans-stilbene (3,5-DHS) and 2,4-dihydroxy-trans-stilbene (2,4-DHS). Antioxidative effects of resveratrol and its analogues against free-radical-induced peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu(2+)). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol (TOH) presented in the native LDL, or by the formation of thiobarbituric acid reactive substances (TBARS). Kinetic analysis of the antioxidation process demonstrates that these trans-stilbene derivatives are effective antioxidants against both AAPH- and Cu(2+)-induced LDL peroxidation with the activity sequence of 3,4,3',4'-THS approximately 3,3'-DM-4,4'-DHS>3,4-DHS approximately 3,4,4'-THS>2,4,4'-THS>resveratrol approximately 3,5-DHS>4,4'-DHS approximately 2,4-HS, and 3,4,3',4'-THS approximately 3,4-DHS approximately 3,4,4'-THS>3,3'-DM-4,4'-DHS>4,4'-DHS>resveratrol approximately 2,4-HS>2,4,4'-THS approximately 3,5-DHS, respectively. Molecules bearing ortho-dihydroxyl or 4-hydroxy-3-methoxyl groups possess significantly higher antioxidant activity than those bearing no such functionalities.  相似文献   

14.
The aim of this study was to evaluate the effects of ergothioneine and cysteamine as antioxidant supplements in a soybean lecithin extender for freezing ram semen. Twenty-four ejaculates were collected from four rams and diluted with extenders (1.5% soybean lecithin, 7% glycerol) containing no supplements (control) and cysteamine or ergothioneine (2, 4, 6 or 8 mM). Motility by CASA, viability, plasma membrane functionality (HOS test), total abnormality, lipid peroxidation, glutathione peroxidase (GPx) activity and capacitation status (CTC staining) were assessed after thawing. Using 6 mM of either antioxidant improved total motility. Cysteamine at 6 mM and ergothioneine at 4 and 6 mM improved viability and reduced lipid peroxidation (malondialdehyde concentration). Both antioxidants improved membrane functionality significantly, except at 8 mM. Progressive motility, kinematic parameters, GPx activity, capacitation status and sperm abnormalities were not influenced by the antioxidant supplements. In conclusion, cysteamine at 6 mM and ergothioneine at 4 or 6 mM seem to improve the post-thawing quality of ram semen cryopreserved in a soybean lecithin extender.  相似文献   

15.
Antioxidant effect of red wine polyphenols on red blood cells   总被引:3,自引:0,他引:3  
The protective effect of red wine polyphenols against hydrogen peroxide (H(2)O(2))-induced oxidation was investigated in normal human erythrocytes (RBCs). RBCs, preincubated with micromolar amounts of wine extract and challenged with H(2)O(2), were analyzed for reactive oxygen species (ROS), hemolysis, methemoglobin production, and lipid peroxidation. All these oxidative modifications were prevented by incubating the RBCs with oak barrel aged red wine extract (SD95) containing 3.5 mM gallic acid equivalent (GAE) of phenolic compounds. The protective effect was less apparent when RBCs were incubated with wines containing lower levels of polyphenols. Furthermore, resveratrol and quercetin, well known red wine antioxidants, showed lower antioxidant properties compared with SD95, indicating that interaction between constituents may bring about effects that are not necessarily properties of the singular components. Our findings demonstrate that the nonalcoholic components of red wine, mainly polyphenols, have potent antioxidant properties, supporting the hypothesis of a beneficial effect of red wine in oxidative stress in human system.  相似文献   

16.
Previous reports proposed that peroxynitrite (ONOO-) oxidizes alpha-tocopherol (alpha-TOH) through a two-electron concerted mechanism. In contrast, ONOO- oxidizes phenols via free radicals arising from peroxo bond homolysis. To understand the kinetics and mechanism of alpha-TOH and gamma-tocopherol (gamma-TOH) oxidation in low-density lipoprotein (LDL) (direct vs. radical), we exposed LDL to ONOO- added as a bolus or an infusion. Nitric oxide (.NO), ascorbate and CO2 were used as key biologically relevant modulators of ONOO- reactivity. Although approximately 80% alpha-TOH and gamma-TOH depletion occurred within 5 min of incubation of 0.8 microM LDL with a 60 microM bolus of ONOO-, an equimolar infusion of ONOO- over 60 min caused total consumption of both antioxidants. gamma-Tocopherol was preserved relative to alpha-TOH, probably due to gamma-tocopheroxyl radical recycling by alpha-TOH. alpha-TOH oxidation in LDL was first order in ONOO- with approximately 12% of ONOO- maximally available. Physiological concentrations of.NO and ascorbate spared both alpha-TOH and gamma-TOH through independent and additive mechanisms. High concentrations of.NO and ascorbate abolished alpha-TOH and gamma-TOH oxidation. Nitric oxide protection was more efficient for alpha-TOH in LDL than for ascorbate in solution, evidencing the kinetically highly favored reaction of lipid peroxyl radicals with.NO than with alpha-TOH as assessed by computer-assisted simulations. In addition, CO2 (1.2 mM) inhibited both alpha-TOH and lipid oxidation. These results demonstrate that ONOO- induces alpha-TOH oxidation in LDL through a one-electron free radical mechanism; thus the inhibitory actions of.NO and ascorbate may determine low alpha-tocopheryl quinone accumulation in tissues despite increased ONOO- generation.  相似文献   

17.
《Free radical research》2013,47(5):522-528
Abstract

The effect of antioxidant supplementation on biomarkers of oxidative stress was investigated in a 6-week intervention study in 60 overweight men. The supplement contained a combination of antioxidants aiming to correspond to the antioxidant content found in a diet rich in fruit and vegetables. Placebo, single or double dose of antioxidants was provided to the subjects. Metabolic variables, plasma antioxidants and biomarkers of oxidative stress (lipid peroxidation and DNA damage) were measured. No effect of supplementation on biomarkers of oxidative stress was observed. Both intervention groups showed substantial increases of plasma antioxidants. This study demonstrated that supplementation with a combination of antioxidants did not affect lipid peroxidation and DNA damage in overweight men, despite increased concentrations of plasma antioxidants. The absence of antioxidant supplement effect might possibly be explained by the chosen study group having a normal level of oxidative stress, duration of the intervention and/or doses of antioxidants.  相似文献   

18.
19.
Oxidative stress and the role of antioxidants are currently one of the most important subjects in the field of life science. In the present study, we assessed the oxidation of plasma lipids induced by free radicals and its inhibition by antioxidants with a fluorescence probe BODIPY. Vitamin E and C-depleted plasma was used to evaluate the inherent action of several antioxidants. BODIPY reacted with free radicals in plasma to emit fluorescence (ex. 510 nm, em. 520 nm), which was suppressed by the antioxidants in a concentration-dependent manner. However, the suppression of fluorescence emission by antioxidants did not always correlate quantitatively with the suppression of lipid peroxidation. For example, alpha-tocopherol suppressed BODIPY fluorescence but enhanced the peroxidation of plasma lipids in the absence of ascorbic acid. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without a phytyl side chain, almost completely suppressed both fluorescence emission and lipid peroxidation in the plasma. These results show that BODIPY can be used as a convenient probe for radical scavenging, but that care should be taken for the evaluation of antioxidant capacity.  相似文献   

20.
The objective of the study was to investigate the role of Umbelliferone (UMB) on lipid peroxidation, nonenzymic and enzymic antioxidants in the plasma and liver of streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 180-200 g, were induced diabetes by administration of STZ (40 mg/kg b.wt.) intraperitoneally. The normal and diabetic rats were treated with UMB (30 mg/kg b.wt.) dissolved in 10% dimethyl sulfoxide (DMSO) for 45 days. Diabetic rats had an elevation in the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD)), and a reduction in nonenzymic antioxidants (vitamin C and reduced glutathione (GSH) except vitamin E in the plasma and liver, and enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in the liver. Decreased level of beta-carotene and increased level of ceruloplasmin (Cp) were observed in the plasma of diabetic rats. Treatment with UMB and glibenclamide brought back lipid peroxidation markers, nonenzymic and enzymic antioxidants to near normalcy. Since UMB treatment decreases lipid peroxidation markers and enhances antioxidants' status it can be considered as a potent antioxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号