首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purified pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) was used to measure the inorganic pyrophosphate in unfractionated extracts of tissues of Pisum sativum L. The fructose 1,6-bisphosphate produced by the above enzyme was measured by coupling to NADH oxidation via aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8). Amounts of pyrophosphate as low as 1 nmol could be measured. The contents of pyrophosphate in the developing embryo of pea, and in the apical 2 cm of the roots, were appreciable; 9.4 and 8.9 nmol g-1 fresh weight, respectively. The possibility that pyrophosphate acts in vivo as an energy source for pyrophosphate: fructose 6-phosphate 1-phosphotransferase and for UDPglucose pyrophosphorylase (EC 2.7.7.9) is considered.  相似文献   

2.
This work was carried out to investigate the relative roles of phosphofructokinase and pyrophosphate-fructose-6-phosphate 1-phosphotransferase during the increased glycolysis at the climacteric in ripening bananas (Musa cavendishii Lamb ex Paxton). Fruit were ripened in the dark in a continuous stream of air in the absence of ethylene. CO2 production, the contents of glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and PPi; and the maximum catalytic activities of pyrophosphate-fructose-6-phosphate 1-phosphotransferase, 6-phosphofructokinase, pyruvate kinase and phosphoenolpyruvate carboxylase were measured over a 12-day period that included the climacteric. Cytosolic fructose-1,6- bisphosphatase could not be detected in extracts of climacteric fruit. The peak of CO2 production was preceded by a threefold rise in phosphofructokinase, and accompanied by falls in fructose 6-phosphate and glucose 6-phosphate, and a rise in fructose 1,6-bisphosphate. No change in pyrophosphate-fructose-6-phosphate 1-phosphotransferase or pyrophosphate was found. It is argued that phosphofructokinase is primarily responsible for the increased entry of fructose 6-phosphate into glycolysis at the climacteric.  相似文献   

3.
Summary A quantative cytochemical assay for PPi-PFK activity in the presence of Fru-2,6-P2 is described along with its application to determine levels of activity in embryos of Pisum sativum and Avena sativa. The activity of ATP-PFK has also been studied in parallel as have PFK activities during the switch from dormant to non-dormant embryos in Avena sativa. PPi-PFK activity, has been demonstrated in all tissues of Pisum sativum embryos and of Avena sativa embryos including the scutellum and the aleurone layers. The PPi-PFK activity was greater than that of ATP-PFK in both dormant and non-dormant seeds though with only marginally more activity in the dormant as opposed to the non-dormant state.Abbreviations AMP adenosine monophosphate - ATP adenosine triphosphate - Fru-1,6-P2 fructose 1,6-bisphosphate - Fru-2,6-P2 fructose 2,6-bisphosphate - Fru-6-P fructose 6-phosphate - FB Pase 2 fructose 2,6-bisphosphatase (EC 3.1.3.46) - Gl-3-PD glyceraldehyde-3-phosphate dehydrogenase - NAD nicotinamide adenine dinucleotide - NBT nitroblue tetrazolium - PEP phosphoenolpyruvate - PFK 6-phosphofructokinase (EC 2.7.1.11) - PFK2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PPi pyrophosphate - PPi-PFK pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) - PVA polyvinyl alcohol (G04/140 Wacke Chemical Company)  相似文献   

4.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was purified over 500-cold from endosperm of germinating castor bean (Ricinus commiunis L. var. Hale). The kinetic properties of the purified enzyme were studied. PFP was specific for pyrophosphate and had a requirement for a divalent metal ion. The pH optimum for activity was 7.3 to 7.7. The enzyme had similar activities in the forward and reverse directions and exhibited hyperbolic kinetics with all substrates. Kinetic constants were determined in the presence of fructose 2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for fructose 6-phosphate, fructose 1,6-bisphosphate, and pyrophosphate up to 10-fold. Half-maximum activation of PFP by fructose 2,6-bisphosphate was obtained at 10 nanomolar. The affinity of PFP for this activator was reduced by decreasing the concentration of fructose 6-phosphate or increasing that of phosphate. Phosphate inhibited PFP when the reaction was measured in the reverse direction, i.e. fructose 6-phosphate production. In the presence of fructose 2,6-bisphosphate, phosphate was a mixed inhibitor with respect to both fructose 6-phosphate and pyrophosphate when the reaction was measured in the forward direction, i.e. fructose 1,6-bisphosphate production. The possible roles of fructose 2,6-bisphosphate, fructose 6-phosphate, and phosphate in the control of PFP are discussed.  相似文献   

5.
Rat hepatic 6-phosphofructo-1-kinase (ATP:d-fructose-6-phosphate 1-phosphotransferase) was purified to homogeneity and its phosphorylation by the catalytic subunit of the cyclic AMP-dependent protein kinase examined. Up to 4 mol of phosphate could be incorporated per mole of tetrameric enzyme, and the phosphate was incorporated into seryl residues. Phosphorylation did not alter the affinity of the enzyme for fructose 6-phosphate or fructose 2,6-bisphosphate. The rate of phosphorylation was enhanced by allosteric activators of 6-phosphofructo-1-kinase such as AMP and fructose 2,6-bisphosphate, and it was decreased by the allosteric inhibitors ATP and H+. The phosphopeptide region of the enzyme subunit was susceptible to limited proteolysis by trypsin. Removal of the phosphopeptide did not affect the subunit molecular weight nor the maximum activity of the enzyme, but it enhanced the apparent affinity of the enzyme for both fructose 6-phosphate and fructose 2,6-bisphosphate. It is concluded that the phosphopeptide region of the enzyme subunit is an important determinant of the affinity of the enzyme for its substrate as well as for the allosteric activator fructose 2,6-bisphosphate.  相似文献   

6.
The biogenic amine octopamine was injected into the haemolymph of 20-days old male locusts,Locusta migratoria, and the content of fructose 2,6-bisphosphate, a potent activator of glycolysis, was measured in the flight muscle after various time. Octopamine brought about a transient increase in fructose 2,6-bisphosphate. After the injection of 10 l of 10 mmol·l-1 d, l-octopamine fructose 2,6-bisphosphate was increased by 61% within 2 min. Ten minutes after the injection fructose 2,6-bisphosphate was increased to 6.71±0.89 nmol·g-1 flight muscle, almost 300% over the control value. Flight caused fructose 2,6-bisphosphate in flight muscle to decrease, but this decrease was counteracted by octopamine injected into the haemolymph of flying locusts. Octopamine and fructose 2,6-bisphosphate may act as signals to stimulate the oxidation of carbohydrate and to integrate muscle performance and metabolism. This mechanism appears particularly significant in the initial stage of flight when carbohydrates are the main fuel.Abbreviations F2,6P2 fructose 2,6-bisphosphate - F6P fructose 6-phosphate - PFK1 6-phosphofructokinase (EC 2.7.1.11) - P i inorganic phosphate - PP i -PFK pyrophosphate dependent fructose 6-phosphate phosphotransferase (EC 2.7.1.90)  相似文献   

7.
Three different molecular forms of pyrophosphate-dependent phosphofructokinase have been isolated: one from Sansevieria trifasciata leaves and two from Phaseolus coccineus stems. The form isolated from S. trifasciata has the molecular weight of about 115,000. The apparent molecular weights for the two forms from mung bean were approximately 220,000 and 450,000. All three forms have the same pH optima, an absolute requirement for Mg2+ ions both in the forward and reverse reaction, but differ in their sensitivity toward fructose 2,6-bisphosphate. Kinetic properties of the partially purified enzymes have been investigated in the presence and absence of fructose 2,6-bisphosphate. Pyrophosphate-dependent phosphofructokinase from S. trifasciata exhibited hyperbolic kinetics with all substrates tested. The saturation curves of the enzyme (form A) from mung bean for pyrophosphate, fructose 6-phosphate and fructose 1,6-bisphosphate were sigmoidal in the absence of fructose 2,6-bisphosphate. In the presence of fructose 2,6-bisphosphate these kinetics became hyperbolic.  相似文献   

8.
Inorganic pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase from mung beans (Phaseolusaureus Roxb.) was activated markedly by D-fructose 2,6-bisphosphate, with a KA of about 50 nM. The enzyme exhibited hyperbolic kinetics both in the absence and presence of the activator. D-Fructose 2,6-bisphosphate (1 μM) decreased the Km for D-fructose 6-phosphate 67-fold (from 20 mM to 0.3 mM) and increased the Vmax 15-fold; these two effects combined to give a 500-fold activation at 0.3 mM D-fructose 6-phosphate. In contrast, ATP:D-fructose 6-phosphate 1-phosphotransferase from the same source was found not to be affected by D-fructose 2,6-bisphosphate.A natural activator for inorganic pyrophosphate:D-fructose 6-phosphate 1-phosphotransferase was isolated from mung-bean extracts and identified as D-fructose 2,6-bisphosphate.  相似文献   

9.
Cell-free preparations from the green alga, Chlorella pyrenoidosa, contained two forms of phosphofructokinase (PFK), designated PFK I and PFK II. This represents the first evidence for a second form of PFK in green algae. A pyrophosphate D-fructose-6-phosphate, 1-phosphotransferase (PFP) activity, that was unaffected by the regulatory metabolite, fructose-2,6-bisphosphate, co-purified with PFK II through several steps. The data suggest that Chlorella pyrenoidosa resembles higher plants in containing two forms of PFK, but differs in containing an atypical form of PFP.Abbreviations PFK phosphofructokinase - PFP pyrophosphate D-fructose-6-phosphate, 1-phosphotransferase, Fru-2,6-P2-fructose-2,6-bisphosphate - DEAE diethylaminoethyl-  相似文献   

10.
Rice (Oryza sativa) seeds were imbibed for 3 days and the seedlings were further incubated for 8 days in the presence of either air or nitrogen. In aerobiosis, the specific activity of pyrophosphate:fructose 6-phosphate 1-phosphotransferase and that of the ATP-dependent phosphofructokinase increased about fourfold. In anaerobiosis, the specific activity of ATP-dependent phosphofructokinase remained stable, whereas that of pyrophosphate:fructose 6-phosphate 1-phosphotransferase increased as much as in the presence of oxygen and there was also a fourfold increase in the concentration of fructose 2,6-bisphosphate, a potent stimulator of that enzyme. These data suggest a preferential involvement of pyrophosphate:fructose 6-phosphate 1-phosphotransferase rather than of ATP-dependent phosphofructokinase in glycolysis during anaerobiosis.  相似文献   

11.
A simple, rapid enzymatic assay for the determination of inorganic pyrophosphate in tissue and plasma has been developed using the enzyme pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) which was purified from extracts of Propionibacterium shermanii. The enzyme phosphorylates fructose-6-phosphate to produce fructose-1,6-bisphosphate using inorganic pyrophosphate as the phosphate donor. The utilization of inorganic pyrophosphate is measured by coupling the production of fructose-1,6-bisphosphate with the oxidation of NADH using fructose-bisphosphate aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1), and glycerol-3-phosphate dehydrogenase (NAD+)(EC 1.1.1.8). The assay is completed in less than 5 min and is not affected by any of the components of tissue or plasma extracts. The recovery of pyrophosphate added to frozen tissue powder was 97 ± 1% (n = 4). In this assay the change in absorbance is linearly related to the concentration of inorganic pyrophosphate over the cuvette concentration range of 0.1 μm to 0.1 mm.  相似文献   

12.
The concentration of fructose 2,6-bisphosphate found in freshly isolated erythrocytes was below the limit of detection (20 pmol/ml of packed cells). However, it increased to about 250 pmol/ml of cells when erythrocytes were incubated with glucose at pH 6.9, but not at pH 7.4 or 8.2. This could be explained by variations in the content of glycerate 2,3-bisphosphate, which was found to inhibit 6-phosphofructo-2-kinase, the enzyme responsible for fructose 2,6-bisphosphate synthesis. Glycerate 2,3-bisphosphate was also found to inhibit the potato enzyme (pyrophosphate:fructose-6-phosphate 1-phosphotransferase) used for the measurement of fructose 2,6-bisphosphate.  相似文献   

13.
Fructose 6-phosphate from several commercial sources was shown to be contaminated with fructose 2,6-bisphosphate. This contaminant was identified by its activation of PPi:fructose 6-phosphate phosphotransferase, extreme acid lability and behaviour on ion-exchange chromatography. The apparent kinetic properties of PPi:fructose 6-phosphate phosphotransferase from castor bean endosperm were considerably altered when contaminated fructose 6-phosphate was used as a substrate. Varying levels of fructose 2,6-bisphosphate in the substrate may account for differences that have been observed in the properties of the above enzyme from several plant sources.  相似文献   

14.
The properties of transketolase from photosynthetic tissue   总被引:1,自引:0,他引:1  
D. J. Murphy  D. A. Walker 《Planta》1982,155(4):316-320
Transketolase (E.C. 2.2.1.1.) has been partially purified from wheat (Triticum aestivum, cv. Sappo) and spinach (Spinacia oleracea) leaves. The fully-active enzyme is a tetramer of relative molecular mass (Mr) of 150 kMr requiring thiamin pyrophosphate for maximal activity, and dissociating into a 74 kMr dimer in its absence or in dilute solution. The chloroplastic transketolase (over 75% of the cellular total) is magnesium-stimulated but the cytosolic form is magnesium-insensitive. Both chloroplastic and cytosolic transketolase showed similar broad specificities towards several ketose phosphate substrates including fructose 6-phosphate and sedoheptulose 7-phosphate. Wheat and spinach leaf transketolases are not light-activated and closely resemble the yeast enzyme in many of their properties.Abbreviations Mr relative molecular mass - TPP thiamin pyrophosphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol  相似文献   

15.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP, EC 2.7.1.90) from endosperm of developing wheat (Triticum aestivum L.) grains was purified to apparent homogeneity with about 52% recovery using ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose and gel filtration through Sepharose-CL-6B. The purified enzyme, having a molecular weight of about 170,000, was a dimer with subunit molecular weights of 90,000 and 80,000, respectively. The enzyme exhibited maximum activity at pH 7.5 and was highly specific for pyrophosphate (PPi). None of the nucleoside mono-, di- or triphosphate could replace PPi as a source of energy and inorganic phosphate (Pi). Similarly, the enzyme was highly specific for fructose-6-phosphate. It had a requirement for Mg2+ and exhibited hyperbolic kinetics with all substrates including Mg2+. Km values as determined by Lineweaver-Burk plots were 322, 31, 139, and 129 micromolar, respectively, for fructose-6-phosphate, PPi, fructose-1,6-bisphosphate and Pi. Kinetic constants were determined in the presence of fructose-2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for its substrates. Initial velocity studies indicated kinetic mechanism to be sequential. At saturating concentrations of fructose-2,6-bisphosphate (1 micromolar), Pi strongly inhibited PFP; the inhibition being mixed with respect to both fructose-6-phosphate and PPi, with Ki values of 0.78 and 1.2 millimolar, respectively. The inhibition pattern further confirmed the mechanism to be sequential with random binding of the substrates. Probable role of PFP in endosperm of developing wheat grains (sink tissues) is discussed.  相似文献   

16.
经硫酸铵分部,DEAE—纤维素、羟基磷灰石、Sephadex G—200及磷酸纤维素柱层析,从菠萝叶片分离得到电泳均一的依赖焦磷酸的磷酸果糖激酶(PFP)。SDS电泳图谱表明有一条分子量为62kD的主带和一条57 kD的弱带。Fru—2,6—P_2对酶的正反应活性有促进作用。动力学研究表明,Fru—2,6—P_2增加V_(max)及酶对底物Fru—6—P和Mg~(2+)的亲和性。  相似文献   

17.
Theodorou ME  Kruger NJ 《Planta》2001,213(1):147-157
A major problem in defining the physiological role of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) is the 1,000-fold discrepancy between the apparent affinity of PFP for its activator, fructose 2,6-bisphosphate (Fru-2,6-P2), determined under optimum conditions in vitro and the estimated concentration of this signal metabolite in vivo. The aim of this study was to investigate the combined influence of metabolic intermediates and inorganic phosphate (Pi) on the activation of PFP by Fru-2,6-P2. The enzyme was purified to near-homogeneity from leaves of spinach (Spinacia oleracea L.). Under optimal in vitro assay conditions, the activation constant (K a) of spinach leaf PFP for Fru-2,6-P2 in the glycolytic direction was 15.8 nM. However, in the presence of physiological concentrations of fructose 6-phosphate, inorganic pyrophosphate (PPi), 3-phosphoglycerate (3PGA), phosphoenolpyruvate (PEP), ATP and Pi the K a of spinach leaf PFP for Fru-2,6-P2 was up to 2000-fold greater than that measured in the optimised assay and V max decreased by up to 62%. Similar effects were observed with PFP purified from potato (Solanum tuberosum L.) tubers. Cytosolic metabolites and Pi also influenced the response of PFP to activation by its substrate fructose 1,6-bisphosphate (Fru-1,6-P2). When assayed under optimum conditions in the gluconeogenic direction, the K a of spinach leaf PFP for Fru-1,6-P2 was approximately 50 μM. Physiological concentrations of PPi, 3PGA, PEP, ATP and Pi increased K a up to 25-fold, and decreased V max by over 65%. From these results it was concluded that physiological concentrations of metabolites and Pi increase the K a of PFP for Fru-2,6-P2 to values approaching the concentration of the activator in vivo. Hence, measured changes in cytosolic Fru-2,6-P2 levels could appreciably alter the activation state of PFP in vivo. Moreover, the same levels of metabolites increase the K a of PFP for Fru-1,6-P2 to an extent that activation of PFP by this compound is unlikely to be physiologically relevant. Received: 21 July 2000 / Accepted: 15 September 2000  相似文献   

18.
Fructose-2,6-bisphosphatase from rat liver   总被引:16,自引:0,他引:16  
An enzyme that catalyzes the stoichiometric conversion of fructose 2,6-bisphosphate into fructose 6-phosphate and inorganic phosphate has been purified from rat liver. This fructose 2,6-bisphosphatase copurified with phosphofructokinase 2 (ATP: D-fructose 6-phosphate 2-phosphotransferase) in the several separation procedures used. The enzyme was active in the absence of Mg2+ and was stimulated by triphosphonucleotides in the presence of Mg2+ and also by glycerol 3-phosphate, glycerol 2-phosphate and dihydroxyacetone phosphate. It was strongly inhibited by fructose 6-phosphate at physiological concentrations and this inhibition was partially relieved by glycerol phosphate and dihydroxyacetone phosphate. The activity of fructose 2,6-bisphosphatase was increased severalfold upon incubation in the presence of cyclic-AMP-dependent protein kinase and cyclic AMP. The activation resulted from an increase in V (rate at infinite concentration of substrate) and from a greater sensitivity to the stimulatory action of ATP and of glycerol phosphate at neutral pH. The activity of fructose 2,6-bisphosphatase could also be measured in crude liver preparations and in extracts of hepatocytes. It was then increased severalfold by treatment of the cells with glucagon, when measured in the presence of triphosphonucleotides.  相似文献   

19.
Fructose 1,6-bisphosphate decreases the activation of yeast 6-phosphofructokinase (ATP:fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11) by fructose 2,6-bisphosphate, especially at cellular substrate concentrations. AMP activation of the enzyme is not influenced by fructose 1,6-bisphosphate. Inorganic phosphate increases the activation by fructose 2,6-bisphosphate and augments the deactivation of the fructose 2,6-bisphosphate activated enzyme by fructose 1,6-bisphosphate. Because various states of yeast glucose metabolism differ in the levels of the two fructose bisphosphates, the observed interactions might be of regulatory significance.  相似文献   

20.
When slices of Jerusalem artichoke tubers were incubated at 25°C, their concentration in fructose 2,6-bisphosphate increased up to 250-fold within 2 h. Fructose 2,6-bisphosphate was also formed, although at a slower rate, in slices incubated at 0°C. Its formation could not be explained by an increase in the concentration of fructose 6-phosphate or of ATP either by an activation of phosphofructo-2-kinase. Pyrophosphate—fructose-6-phosphate 1-phosphotransferase was the only enzyme present in a tuber extract which was found to be sensitive to fructose 2,6-bisphosphate. An improved procedure for the assay of fructose 2,6-bisphosphate is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号