首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of transglutaminase II (TGase II) in hyaluronic acid (HA)-promoted melanoma cell motility was investigated. HA induced the expression of TGase II via the nuclear factor κB (NF-kB) in melanoma cells. HA increased the Rac1 activity and phosphorylation of focal adhesion kinase (FAK). Transfection by lipofectamine of dominant-negative Rac1, and FAK-related non-kinase (FRNK), an endogenous inhibitor of FAK, suppressed the induction of TGase II. This suggests that Rac1 and FAK mediate induction of TGase II by HA. HA-promoted melanoma cell motility was inhibited by cystamine, an inhibitor of TGase II, and overexpression of TGase II enhanced melanoma cell motility through reactive oxygen species. Taken together, HA promotes melanoma cell motility through activation of Rac1, FAK, and induction of TGase II.  相似文献   

2.
Park D  Shim E  Kim Y  Kim YM  Lee H  Choe J  Kang D  Lee YS  Jeoung D 《Molecules and cells》2008,25(2):184-195
We examined the role of c-FLIP in the motility of HeLa cells. A small interfering RNA (siRNA) directed against c-FLIP inhibited the adhesion and motility of the cells without affecting their growth rate. The long form of c-FLIP (c-FLIPL), but not the short form (c-FLIPS), enhanced adhesion and motility. Downregulation of c-FLIPL with siRNA decreased phosphorylation of FAK and ERK, while overexpression of c-FLIPL increased their phosphorylation. Overexpression of FAK activated ERK, and enhanced the motility of HeLa cells. FRNK, an inhibitory fragment of FAK, inhibited ERK and decreased motility. Inhibition of ERK also significantly suppressed c-FLIPL-promoted motility. Inhibition of ROCK by Y27632 suppressed the c-FLIPL-promoted motility by reducing phosphorylation of FAK and ERK. Overexpression of c-FLIPL increased the expression and secretion of MMP-9, and inhibition of MMP-9 by Ilomastat reduced c-FLIPL- promoted cell motility. A caspase-like domain (amino acids 222-376) was found to be necessary for the c-FLIPL-promoted cell motility. We conclude that c-FLIPL promotes the motility of HeLa cells by activating FAK and ERK, and increasing MMP-9 expression.  相似文献   

3.
Macrophage stimulating protein (MSP) is a growth and motility factor that mediates its activity via the RON/STK receptor tyrosine kinase. MSP promotes integrin-dependent epithelial cell migration, which suggests that MSP may regulate integrin receptor functions. Integrins are cell surface receptors for extracellular matrix. Epithelial cell adhesion and motility are mediated by integrins. We studied the enhancement by MSP of cell adhesion and the molecular mechanisms mediating this effect. MSP decreased the time required for adhesion of 293 and RE7 epithelial cells to substrates coated with collagen or fibronectin. Prevention of adhesion by an RGD-containing peptide showed that the cell-substrate interaction was mediated by integrins. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), blocked MSP-dependent adhesion, which shows that PI3-K is in the MSP-induced adhesion pathway. MSP also affected focal adhesion kinase (FAK) which is important for some types of cell adhesion and motility. Although MSP caused PI3-K-independent tyrosine phosphorylation and activation of FAK, experiments with dominant-negative FAK constructs showed that FAK does not mediate the effects of MSP on cell adhesion or motility. Thus PI3-K, but not FAK, mediates MSP-induced integrin-dependent adhesion of epithelial cells. Also, we found ligand-independent association between RON and beta1 integrin, which is additional evidence for a relationship between these two receptor systems.  相似文献   

4.
Previously, we reported insulin-like growth factor-I (IGF-I) promotes motility and focal adhesion kinase (FAK) activation in neuronal cells. In the current study, we examined the role of IGF-I in Schwann cell (SC) motility. IGF-I increases SC process extension and motility. In parallel, IGF-I activates IGF-I receptor, insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3 (PI-3)-kinase, and FAK. LY294002, a PI-3 kinase inhibitor, blocks IGF-I-induced motility and FAK phosphorylation. The Rho family of GTPases is important in the regulation of the cytoskeleton. Overexpression of constitutively active Leu-61 Cdc42 and Val-12 Rac1 enhances SC motility which is unaffected by LY294002. In parallel, stable transfection of SC with dominant negative Asn-17 Rac1 blocks IGF-I-mediated SC motility and FAK phosphorylation, implying Rac is an upstream regulator of FAK. Collectively our results suggest that IGF-I regulates SC motility by reorganization of the actin cytoskeleton via the downstream activation of a PI-3 kinase, small GTPase, and FAK pathway.  相似文献   

5.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

6.
Freshly isolated peripheral blood monocytes lack focal adhesion kinase (p125(FAK)) but activate a second member of this kinase family, calcium-dependent tyrosine kinase (CADTK; also known as Pyk2/CAKbeta/RAFTK/FAK2), upon adhesion or stimulation with chemokines. To study the role of CADTK in monocyte adherence and motility, we performed immunocytochemical localization that showed CADTK at the leading edge and ruffling lamellipodial structures in freshly isolated, adhered human monocytes. We next introduced CADTK/CAKbeta-related non-kinase (CRNK), the C-terminal noncatalytic domain of CADTK, into monocytes by electroporation and showed that it inhibited CADTK autophosphorylation. Introduction of the fusion protein glutathione S-transferase (GST)-CRNK also reduced (i) cell spreading, as reflected in a reduced cell area 30 min after adhesion, (ii) adhesion-induced phosphotyrosine increases and redistribution into lamellipodia, and (iii) adhesion-induced extracellular signal-regulated protein kinase (ERK) activation. In control experiments, introduction of GST or GST-C3 transferase (an inhibitor of RhoA GTPase activity) by electroporation did not affect these parameters. Monocytes adhered in the presence of autologous serum were highly motile even after introduction of GST (83% motile cells). However, only 26% of monocytes with introduced GST-CRNK were motile. In contrast, GST-CRNK-treated monocytes were fully capable of phagocytosis and adhesion-induced cytokine gene induction, suggesting that CADTK is not involved in these cellular activities and that GST-CRNK introduction does not inhibit global monocyte functions. These results suggest that CADTK is crucial for the in vitro monocyte cytoskeletal reorganization necessary for cell motility and is likely to be required in vivo for recruitment to sites of inflammation.  相似文献   

7.
Higher levels of focal adhesion kinase (FAK) are expressed in colon metastatic carcinomas. However, the signaling pathways and their mechanisms that control cell adhesion and motility, important components of cancer metastasis, are not well understood. We sought to identify the integrin-mediated mechanism of FAK cleavage and downstream signaling as well as its role in motility in human colon cancer GEO cells. Our results demonstrate that phosphorylated FAK (tyrosine 397) is cleaved at distinct sites by integrin signaling when cells attach to collagen IV. Specific blocking antibodies (clone P1E6) to integrin alpha2 inhibited FAK activation and cell motility (micromotion). Ectopic expression of the FAK C-terminal domain FRNK attenuated FAK and ERK phosphorylation and micromotion. Calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal blocked FAK cleavage, cell adhesion, and micromotion. Antisense approaches established an important role for mu-calpain in cell motility. Expression of wild type mu-calpain increased cell micromotion, whereas its point mutant reversed the effect. Further, cytochalasin D inhibited FAK phosphorylation and cleavage, cell adhesion, locomotion, and ERK phosphorylation, thus showing FAK activation downstream of actin assembly. We also found a pivotal role for FAK Tyr(861) phosphorylation in cell motility and ERK activation. Our results reveal a novel functional connection between integrin alpha2 engagement, FAK, ERK, and mu-calpain activation in cell motility and a direct link between FAK cleavage and enhanced cell motility. The data suggest that blocking the integrin alpha2/FAK/ERK/mu-calpain pathway may be an important strategy to reduce cancer progression.  相似文献   

8.
FAK integrates growth-factor and integrin signals to promote cell migration   总被引:1,自引:0,他引:1  
Here we show that cells lacking focal adhesion kinase (FAK) are refractory to motility signals from platelet-derived and epidermal growth factors (PDGF and EGF respectively), and that stable re-expression of FAK rescues these defects. FAK associates with activated PDGF- and EGF-receptor (PDGFR and EGFR) signalling complexes, and expression of the band-4.1-like domain at the FAK amino terminus is sufficient to mediate an interaction with activated EGFR. However, efficient EGF-stimulated cell migration also requires FAK to be targeted, by its carboxy-terminal domain, to sites of integrin-receptor clustering. Although the kinase activity of FAK is not needed to promote PDGF- or EGF-stimulated cell motility, kinase-inactive FAK is transphosphorylated at the indispensable Src-kinase-binding site, FAK Y397, after EGF stimulation of cells. Our results establish that FAK is an important receptor-proximal link between growth-factor-receptor and integrin signalling pathways.  相似文献   

9.
10.
Liver kinase β1 (LKB1, also known as STK11) is a serine/threonine kinase that has multiple cellular functions including the regulation of cell polarity and motility. Murine proteomic studies show that LKB1 loss causes aberrant adhesion signaling; however, the mechanistic underpinnings of this relationship are unknown. We show that cells stably depleted of LKB1 or its co-activator STRADα have increased phosphorylation of focal adhesion kinase (FAK) at Tyr397/Tyr861 and enhanced adhesion to fibronectin. LKB1 associates in a complex with FAK and LKB1 accumulation at the cellular leading edge is mutually excluded from regions of activated Tyr397-FAK. LKB1-compromised cells lack directional persistence compared with wild-type cells, but this is restored through subsequent pharmacological FAK inhibition or depletion, showing that cell directionality is mediated through LKB1-FAK signaling. Live cell confocal imaging reveals that LKB1-compromised cells lack normal FAK site maturation and turnover, suggesting that defects in adhesion and directional persistence are caused by aberrant adhesion dynamics. Furthermore, re-expression of full-length wild-type or the LKB1 N-terminal domain repressed FAK activity, whereas the kinase domain or C-terminal domain alone did not, indicating that FAK suppression is potentially regulated through the LKB1 N-terminal domain. Based upon these results, we conclude that LKB1 serves as a FAK repressor to stabilize focal adhesion sites, and when LKB1 function is compromised, aberrant FAK signaling ensues, resulting in rapid FAK site maturation and poor directional persistence.  相似文献   

11.
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase localized to regions called focal adhesions. Many stimuli can induce tyrosine phosphorylation and activation of FAK, including integrins and growth factors. The major site of autophosphorylation, tyrosine 397, is a docking site for the SH2 domains of Src family proteins. The other sites of phosphorylation are phosphorylated by Src kinases. Phosphorylated FAK binds proteins of focal adhesion and can activate them directly or indirectly by phosphorylation. These activated proteins forming the FAK complex facilitate the generation of downstream signals necessary to regulate cell functions, like motility, survival and proliferation. Dysregulation of FAK could participate in the development of cancer. This review will focus upon the mechanisms by which FAK transmits biochemical signals and elicits biological effects.  相似文献   

12.
Cell migration is modulated by regulatory molecules such as growth factors, oncogenes, and the tumor suppressor PTEN. We previously described inhibition of cell migration by PTEN and restoration of motility by focal adhesion kinase (FAK) and p130 Crk-associated substrate (p130(Cas)). We now report a novel pathway regulating random cell motility involving Shc and mitogen-activated protein (MAP) kinase, which is downmodulated by PTEN and additive to a FAK pathway regulating directional migration. Overexpression of Shc or constitutively activated MEK1 in PTEN- reconstituted U87-MG cells stimulated integrin- mediated MAP kinase activation and cell migration. Conversely, overexpression of dominant negative Shc inhibited cell migration; Akt appeared uninvolved. PTEN directly dephosphorylated Shc. The migration induced by FAK or p130(Cas) was directionally persistent and involved extensive organization of actin microfilaments and focal adhesions. In contrast, Shc or MEK1 induced a random type of motility associated with less actin cytoskeletal and focal adhesion organization. These results identify two distinct, additive pathways regulating cell migration that are downregulated by tumor suppressor PTEN: one involves Shc, a MAP kinase pathway, and random migration, whereas the other involves FAK, p130(Cas), more extensive actin cytoskeletal organization, focal contacts, and directionally persistent cell motility. Integration of these pathways provides an intracellular mechanism for regulating the speed and the directionality of cell migration.  相似文献   

13.
The integrin-linked kinase (ILK) is a multidomain focal adhesion protein implicated in signal transmission from integrin and growth factor receptors. We have determined that ILK regulates U2OS osteosarcoma cell spreading and motility in a manner requiring both kinase activity and localization. Overexpression of wild-type (WT) ILK resulted in suppression of cell spreading, polarization, and motility to fibronectin. Cell lines overexpressing kinase-dead (S343A) or paxillin binding site mutant ILK proteins display inhibited haptotaxis to fibronectin. Conversely, spreading and motility was potentiated in cells expressing the "dominant negative," non-targeting, kinase-deficient E359K ILK protein. Suppression of cell spreading and motility of WT ILK U2OS cells could be rescued by treatment with the Rho-associated kinase (ROCK) inhibitor Y-27632 or introduction of dominant negative ROCK or RhoA, suggesting these cells have increased RhoA signaling. Activation of focal adhesion kinase (FAK), a negative regulator of RhoA, was reduced in WT ILK cells, whereas overexpression of FAK rescued the observed defects in spreading and cell polarity. Thus, ILK-dependent effects on ROCK and/or RhoA signaling may be mediated through FAK.  相似文献   

14.
Cells lacking vinculin are highly metastatic and motile. The reasons for this finding have remained unclear. Both enhanced survival and motility are critical to metastasis. Here, we show that vinculin null (vin-/-) cells and cells expressing a vinculin Y822F mutant have increased survival due to up-regulated activity of extracellular signal-regulated kinase (ERK). This increase is shown to result from vinculin's modulation of paxillin-FAK interactions. A vinculin fragment (amino acids 811-1066) containing the paxillin binding site restored apoptosis and suppressed ERK activity in vin-/- cells. Both vinY822F and vin-/- cells exhibit increased interaction between paxillin and focal adhesion kinase (FAK) and increased paxillin and FAK phosphorylation. Transfection with paxillin Y31FY118F dominant-negative mutant in these cells inhibits ERK activation and restores apoptosis. The enhanced motility of vin-/- and vinY822F cells is also shown to be due to a similar mechanism. Thus, vinculin regulates survival and motility via ERK by controlling the accessibility of paxillin for FAK interaction.  相似文献   

15.
Fibroblasts derived from focal adhesion kinase (FAK)-null mouse embryos have a reduced migration rate and an increase in the number and size of peripherally localized adhesions (Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., and Yamamoto, T. (1995) Nature 377, 539-544). In this study, we have found that Y27632, a specific inhibitor for Rho-associated kinase (Rho-kinase), dramatically reversed the round cell morphology of FAK(-/-) cells to a spread fibroblast-like shape in 30 min and significantly enhanced their motility. The effects of Y27632 on the FAK(-/-) cell morphology and motility were concomitant with reorganization of the actin cytoskeleton and redistribution of focal adhesions. Conversely, the expression of the constitutively active Rho-kinase in FAK(+/+) cells led to round cell shape and inhibition of cell motility. Furthermore, coincident with the formation of cortical actin filaments, myosin light chain (MLC), Ser-19-phosphorylated MLC, and MLC kinase mainly accumulated at the FAK(-/-) cell periphery. We found that the disruption of actin filaments by cytochalasin D prevented the peripheral accumulation of MLC kinase and that inhibition of myosin-mediated contractility by 2,3-butanedione monoxime induced FAK(-/-) cells to spread. Taken together, our results suggest that Rho-kinase may mediate the formation of cortical actomyosin filaments at the FAK(-/-) cell periphery, which further recruits MLC kinase to the cell periphery and generates a non-polar contractile force surrounding the cell, leading to cell rounding and decreased motility.  相似文献   

16.
Focal adhesion kinase: in command and control of cell motility   总被引:15,自引:0,他引:15  
A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.  相似文献   

17.
Many cells (e.g., epithelial cells) require attachment to the extracellular matrix (ECM) to survive, a phenomenon known as anchorage-dependent cell survival. Disruption of the cell–ECM interactions mediated by the integrin receptors results in apoptosis. Focal adhesion kinase (FAK), a 125-kD protein tyrosine kinase activated by integrin engagement, appears to be involved in mediating cell attachment and survival. Proline-rich tyrosine kinase 2 (PYK2), also known as cellular adhesion kinase β (CAKβ) and related adhesion focal tyrosine kinase, is a second member of the FAK subfamily and is activated by an increase in intracellular calcium levels, or treatment with TNFα and UV light. However, the function of PYK2 remains largely unknown. In this study, we show that over-expression of PYK2, but not FAK, in rat and mouse fibroblasts leads to apoptotic cell death. Using a series of deletion mutants and chimeric fusion proteins of PYK2/FAK, we determined that the NH2-terminal domain and tyrosine kinase activity of PYK2 were required for the efficient induction of apoptosis. Furthermore, the apoptosis mediated by PYK2 could be suppressed by over-expressing catalytically active v-Src, c-Src, phosphatidylinositol-3-kinase, or Akt/protein kinase B. In addition, it could also be suppressed by overexpressing an ICE or ICE-like proteinase inhibitor, crmA, but not Bcl2. Collectively, our results suggest that PYK2 and FAK, albeit highly homologous in primary structure, appear to have different functions; FAK is required for cell survival, whereas PYK2 induces apoptosis in fibroblasts.  相似文献   

18.
During the healing process of skin wounds, human keratinocytes migrate across a provisional matrix of the wound bed. The mechanisms by which keratinocytes migrate on connective tissue are not known. In this study, we examined the role of focal adhesion kinase (FAK), an 125 kDa protein that co-localizes with focal adhesions in cells plated on extracellular matrix. We induced human keratinocytes into various states of migration by plating them on extracellular matrices that minimally, moderately, or strongly induce cellular migration, and then examined the expression of FAK at the protein level and its degree of tyrosine phosphorylation using Western immunoblotting and immunoprecipitation. In highly migratory human keratinocytes, we found that three proteins were predominantly tyrosine phosphorylated, one of them being FAK. Tyrosine phosphorylation of FAK tightly correlated with the level of cellular motility but not cell attachment to the matrix. Time course experiments demonstrated that in highly motile keratinocytes, tyrosine phosphorylation of FAK peaked at 12 h, the time when maximal migration on the matrix ensues. In contrast to FAK, the beta1 integrin subunit of human keratinocytes that configures with the alpha2, alpha3, and alpha5 integrin subunits to form integrin receptors for matrix, did not display tyrosine phosphorylation linked to motility. Using anti-sense oligonucleotides to FAK, we demonstrate that FAK is required for human keratinocyte migration, but not for focal adhesion formation.  相似文献   

19.
We have previously shown that sphingosine 1-phosphate (S1P) stimulates motility of human umbilical vein endothelial cells (HUVECs) (O.-H. Lee et al., Biochem. Biophys. Res. Commun. 264, 743-750, 1999). To investigate the molecular mechanisms by which S1P stimulates HUVEC motility, we examined tyrosine phosphorylation of p125 focal adhesion kinase (p125(FAK)) which is important for cell migration. S1P induces a rapid increase in tyrosine phosphorylation of p125(FAK). Compared with other structurally related lipid metabolites such as sphingosine, C2-ceramide, and lysophosphatidic acid, S1P uniquely stimulated p125(FAK) tyrosine phosphorylation and migration of HUVECs. The effect of S1P on p125(FAK) tyrosine phosphorylation was markedly reduced by treatment with pertussis toxin or U73122, a phospholipase C (PLC) inhibitor. As a downstream signal of PLC, p125(FAK) tyrosine phosphorylation in response to S1P was totally blocked by depletion of the intracellular calcium pool. However, protein kinase C (PKC) inhibitor had no effect on the response to S1P. Finally, chemotaxis assays revealed that inhibition of PLC but not PKC significantly abrogated S1P-stimulated HUVEC migration. These results suggest that the G(i)-coupled receptor-mediated PLC-Ca(2+) signaling pathway may be importantly involved in S1P-stimulated focal adhesion formation and migration of endothelial cells.  相似文献   

20.
Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (approximately 600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号