首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMβ2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.  相似文献   

2.
Neopterin is synthesized by human monocyte-derived macrophages primarily upon stimulation with the cytokine interferon-gamma. We studied the influence of neopterin on the generation of reactive oxygen species (ROS) in human peripheral blood neutrophils. Radical formation was measured using a biochemiluminometer. Neutrophils were isolated from peripheral blood of healthy donors. The generation of ROS by neutrophils suspended in Earl's solution (pH=7.4) at 37 degrees C was investigated by monitoring of chemiluminescence using luminol and lucigenin as light emitters. Neopterin induced chemiluminescence in suspensions of neutrophils in the presence of luminol, but not of lucigenin. Neopterin affected only adhesive cells. Addition of neopterin into the suspension of the cells involving D-mannitol, L-histidine and diazabicyclo[2.2.2]octane (DABCO) decreased luminol-dependent chemiluminescence (LDCL) of the neutrophils. The action of superoxide dismutase (SOD) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reduced neopterin-induced LDCL of neutrophils. Data suggest that neutrophils respond on exposure to neopterin with additional generation of singlet oxygen, hydroxyl radical and nitric oxide by nicotinamide adenine dinucleotide phosphate (NADPH)-independent pathways.  相似文献   

3.
Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species   总被引:10,自引:0,他引:10  
The ubiquitously expressed c-Abl protein tyrosine kinase localizes to both the nucleus and cytoplasm. The nuclear form of c-Abl is activated in the cellular response to genotoxic stress. Here we show that cytoplasmic c-Abl is activated by oxidative stress. The results also demonstrate that mitochondrial cytochrome c is released in the cellular response to H(2)O(2) and that this effect is mediated by a c-Abl-dependent mechanism. In concert with these results, we show that H(2)O(2)-induced apoptosis is attenuated in c-Abl-deficient cells. These findings demonstrate that cytoplasmic c-Abl is involved in the apoptotic response of cells to oxidative stress.  相似文献   

4.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been shown to function as second messenger molecules. To date, seven members of this family have been reported, including Nox1-5 and Duox1 and -2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and it requires two cytosolic regulators, NoxO1 and NoxA1, as well as the binding of Rac1 GTPase, for its activity. In this study, we investigate the role of the tyrosine kinase c-Src in the regulation of ROS formation by Nox1. We show that c-Src induces Nox1-mediated ROS generation in the HT29 human colon carcinoma cell line through a Rac-dependent mechanism. Treatment of HT29 cells with the Src inhibitor PP2, expression of a kinase-inactive form of c-Src, and c-Src depletion by small interfering RNA (siRNA) reduce both ROS generation and the levels of active Rac1. This is associated with decreased Src-mediated phosphorylation and activation of the Rac1-guanine nucleotide exchange factor Vav2. Consistent with this, Vav2 siRNA that specifically reduces endogenous Vav2 protein is able to dramatically decrease Nox1-dependent ROS generation and abolish c-Src-induced Nox1 activity. Together, these results establish c-Src as an important regulator of Nox1 activity, and they may provide insight into the mechanisms of tumor formation in colon cancers.  相似文献   

5.
Increased neopterin concentrations in human serum indicate activation of cell-mediated immune response. Earlier we have shown that neopterin enhanced generation of singlet oxygen, hydroxyl radical and nitric oxide in human peripheral blood neutrophils by NADPH-independent pathways. To further investigate a participation of neopterin in reactive species production by neutrophils, we studied its influence on myeloperoxidase (MPO) activity. MPO was isolated from human peripheral blood neutrophils from healthy donors. Generation of reactive species by MPO/H(2)O(2) in Earl's solution (pH=7.2) at 37 degrees C was investigated by monitoring of chemiluminescence using luminol as light emitter. In the MPO/H(2)O(2) system, neopterin increased singlet oxygen in a concentration-dependent manner, but it decreased formation of other oxidizing species. Comparing several oxygen scavengers, formation of reactive species was totally blocked by sodium azide (NaN(3)), both in the presence and in the absence of neopterin. Superoxide dismutase (SOD) and d-mannitol insignificantly decreased chemiluminescence of this reaction, but diazabicyclo[2.2.2]octane (DABCO) strongly inhibited it. We conclude that the effects of neopterin on neutrophils' MPO are directed to increase singlet oxygen and to decrease other reactive species via inhibition of MPO and/or scavenging of reactive species.  相似文献   

6.
Baker MA  Krutskikh A  Aitken RJ 《Protoplasma》2003,221(1-2):145-151
Summary.  Spermatozoa were the first cell type suggested to generate reactive oxygen species. However, a lack of standardization in sperm preparation techniques and the obfuscating impact of contaminating cell types in human ejaculates have made it difficult to confirm that mammalian germ cells do, in fact, make such reactive metabolites. By identifying, on a molecular level, those entities involved in reactive oxygen species generation and demonstrating their presence in spermatozoa, the role of redox chemistry in the control of sperm function can be elucidated. Two major proteins have apparently been identified in this context, namely, NOX5, a calcium-activated NADPH oxidase, and nitric oxide synthase. Understanding the involvement of these enzymes in sperm physiology is essential if we are to understand the causes of oxidative stress in the male germ line. Received May 2, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.  相似文献   

7.
Background. Bacteria have different characteristics in stimulation of human neutrophils to produce reactive oxygen species (ROS) and chemokines. This study examined the ability of Helicobacter pylori to induce production of ROS and chemokines by human neutrophils. Methods. H. pylori strains (1.5 × 108 CFU/ml) were cocultured with 5 × 104 neutrophils isolated from healthy subjects. Samples were incubated with human serum with or without IgG antibodies to H. pylori. ROS production was measured using luminol‐dependent chemiluminescence (LmCL), and the concentrations of chemokines (IL‐8, RANTES, MIP‐1α and MCP‐1) were measured by ELISA. Results. The mean of the highest LmCL (peak height; PH) value stimulated by H. pylori was 3318 in the absence of serum. PH increased to 4687 when incubated with anti‐H. pylori antibody‐positive sera (p < .001) but antibody‐negative sera did not affect LmCL response. The mean final concentration of IL‐8 produced in the absence of serum was 142.6 pg/ml. Increased IL‐8 production was seen by addition of antibody positive serum (p < .01). IL‐8 production was not significantly correlated with production of ROS. On the other hand, H. pylori stimulation did not induce neutrophil production of RANTES, MIP‐1α or MCP‐1. Conclusions. H. pylori was capable of inducing IL‐8 production by human neutrophils, but not C‐C chemokines. Production of C‐X‐C dominant chemokine by neutrophils is consistent with the pathological characteristics of H. pylori‐induced gastritis, where persistent neutrophil infiltration is present.  相似文献   

8.
《Luminescence》2002,17(3):141-149
In this study, the effects of exogenous lysophospholipids—lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine and lysophosphatidylserine—on the kinetics of reactive oxygen species (ROS) production by human neutrophils are described. The ROS production by human neutrophils was monitored by luminol‐amplified chemiluminescence after cell stimulation with the chemotactic tripeptide, fMLP, or with the phorbol ester, PMA. The interaction of lysophospholipids with the membrane of human neutrophils was additionally tested by mass spectrometry. Lysophosphatidylcholine showed the most pronounced effect on the chemiluminescence pattern, as well as the intensity of the fMLP and PMA‐stimulated cells, whereas lysophosphatidic acid showed a slight priming effect when fMLP was used for stimulation. In the case of fMLP‐stimulated cells, lysophosphatidylcholine inhibited the first phase and enhanced the second phase of chemiluminescence, whereas the chemiluminescence of PMA‐stimulated neutrophils was inhibited in a concentration‐dependent manner. We conclude that lysophosphatidylcholine is able to interact with protein kinase C‐dependent signalling pathways leading to NADPH oxidase activation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).  相似文献   

10.
11.
Increased oxidative stress (OS) in diabetes mellitus is one of the major factors leading to diabetic pathology. However, the mediators and mechanism that provoke OS in diabetes is not fully understood, and it is possible that accumulation of advanced glycation end products (AGEs) formed secondary to hyperglycemic conditions may incite circulating polymorphonuclear neutrophils (PMN) to generate reactive oxygen species (ROS). In this report, we aim to investigate the effect of AGE on reactive oxygen and nitrogen species generation and subsequent OS in PMN. AGE-HSA exert dose- and time-dependent enhancement of ROS and reactive nitrogen intermediates (RNI) generation by PMN. Increased ROS and RNI generation were found to be mediated through the upregulation of NADPH oxidase and inducible nitric oxide synthase (iNOS), respectively, as evident from the fact that AGE-treated neutrophils failed to generate ROS and RNI in presence of diphenyleneiodonium, a flavoprotein inhibitor for both enzymes. Further increased generation of ROS and RNI ceased when the cells were incubated with anti-RAGE antibody suggesting the involvement of AGE-RAGE interaction. Also increased malondialdehyde (MDA) and protein carbonyl formation in AGE-exposed PMN suggest induction of OS by AGE. This study provides evidence that AGEs may play a key role in the induction of oxidative stress through the augmentation of PMN-mediated ROS and RNI generation and this may be in part responsible for development of AGE-induced diabetic pathology.  相似文献   

12.
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.  相似文献   

13.
A novel approach for the simultaneous optical and electrochemical detection of biologically produced reactive oxygen species has been developed and applied. The set-up consists of a luminol-dependent chemiluminescence assay combined with two amperometric biosensors sensitive to superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)), respectively. The method permits direct, real-time in vitro determination of both extra- and intracellular O(2)(-) and H(2)O(2) produced by human neutrophil granulocytes. The rate of O(2)(-) production by stimulated neutrophils was calculated to about 10(-17)mol s(-1) per single cell. With inhibited NADPH oxidase, a distinct extracellular release of H(2)O(2) instead of O(2)(-) was obtained from stimulated neutrophils with the rate of about 3 x 10(-18)mol s(-1) per single cell. When the H(2)O(2) release was discontinued, fast H(2)O(2) utilisation was observed. Direct interaction with and possibly attachment of neutrophils to redox protein-modified gold electrodes, resulted in a spontaneous respiratory burst in the population of cells closely associated to the electrode surface. Hence, further stimulation of human neutrophils with a potent receptor agonist (fMLF) did not significantly increase the O(2)(-) sensitive amperometric response. By contrast, the H(2)O(2) sensitive biosensor, based on an HRP-modified graphite electrode, was able to reflect the bulk concentration of H(2)O(2), produced by stimulated neutrophils and would be very useful in modestly equipped biomedical research laboratories. In summary, the system would also be appropriate for assessment of several other metabolites in different cell types, and tissues of varying complexity, with only minor electrode modifications.  相似文献   

14.
Kinetics of neutrophil inactivation was investigated in vitro by Nitroblue tetrazolium (NBT) test in the process of their contact with the substrate. It has been shown that the previous thermostatation results in an exclusive inactivation of neutrophils with high reaction ability leading to their complete inactivation. Such an inactivation is a consequence of cell contacts with the substrate, whose chemical structure and physicochemical properties define the process regularities. The neutrophil inactivation is probably not a consequence of the contact itself but may follow the next scheme: stimulus (contact with substrate)--generation of reactive oxygen metabolites--inactivation. Two functional unequal classes of neutrophils were differentiated on the basis of different levels of their reactive oxygen metabolite generation, and on their ability to inactivation. In vitro cells of one of these classes actively generate reactive oxygen metabolites to be inactivated in consequence of interaction with the substrate, whereas cells of the other class produce reactive oxygen metabolites less actively and are nor inactivated. Evidently, in vivo cells of the are phagocytes and those of the latter fulfill other functions.  相似文献   

15.
Reactive oxygen species (ROS) participate as second messengers in the mitogenic signal transduction. Most of the experimental data supporting the role of ROS as signaling molecules have been obtained by using H2O2. Exposure of cells to H2O2 rapidly increases tyrosine phosphorylation of tyrosine kinase receptors (TKRs) in the absence of growth factor binding, thus inducing the activation of downstream signaling cascades, like that of protein kinase B (AKT). Another molecule able to induce an increase of intracellular ROS levels is diethylmaleate (DEM), which acts by depleting the ROS scavenger reduced glutathione (GSH). A comparison of the effects exerted by H2O2 and DEM shows that the latter induces redox modifications milder than those generated by H2O2. We also demonstrated that DEM-induced redox modifications are not accompanied by platelet-derived growth factor-receptor (PDGF-R) and epidermal growth factor-receptor Tyr phosphorylation, although they are able to activate ERKs and AKT, with kinetics different from those observed following H2O2 treatment. The activation of these two pathways is not blocked by AG1296, a selective inhibitor of PDGF-R Tyr kinase, thus confirming that the effects of DEM are not mediated by the TKR phosphorylation. On the contrary, PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole[3,4-d]pyrimidine), an inhibitor of Src kinase, completely prevents DEM- and H2O2-induced AKT activation but has no effect on the pathway of ERKs. Finally, nitration of Tyr residues in PDGF-R is observed in DEM-treated cells, thus suggesting that ROS-induced modifications different from Tyr phosphorylation can occur at the growth factor-receptor level and can be involved in the regulation of signaling pathways.  相似文献   

16.
Reactive oxygen species (ROS; free radical form O2•−, superoxide radical; OH, hydroxyl radical; ROO, peroxyl; RO, alkoxyl and non-radical form 1O2, singlet oxygen; H2O2, hydrogen peroxide) are inevitable companions of aerobic life with crucial role in gut health. But, overwhelming production of ROS can cause serious damage to biomolecules. In this review, we have discussed several sources of ROS production that can be beneficial or dangerous to the human gut. Micro-organisms, organelles and enzymes play crucial role in ROS generation, where NOX1 is the main intestinal enzyme, which produce ROS in the intestine epithelial cells. Previous studies have reported that probiotics play significant role in gut homeostasis by checking the ROS generation, maintaining the antioxidant level, immune system and barrier protection. With current knowledge, we have critically analysed the available literature and presented the outcome in the form of bubble maps to suggest that the probiotics help in controlling the ROS-specific intestinal diseases, such as inflammatory bowel disease (IBD) and colon cancer. Finally, it has been concluded that rebooting of the gut microbiota with probiotics, postbiotics or faecal microbiota transplantation (FMT) can have crucial implications in the structuring of gut communities for the personalized management of the gastrointestinal (GI) diseases.  相似文献   

17.
18.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

19.
The BCR/ABL oncogene causes chronic myelogenous leukemia, a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and myeloid cells. It is shown here that transformation of the hematopoietic cell lines Ba/F3, 32Dcl3, and MO7e with BCR/ABL results in an increase in reactive oxygen species (ROS) compared with quiescent, untransformed cells. The increase in ROS was directly due to BCR/ABL because it was blocked by the ABL-specific tyrosine kinase inhibitor STI571. Oxidative stress through ROS is believed to have many biochemical effects, including the potential ability to inhibit protein-tyrosine phosphatases (PTPases). To understand the significance of increased production of ROS, a model system was established in which hydrogen peroxide (H(2)O(2)) was added to untransformed cells to mimic the increase in ROS induced constitutively by BCR/ABL. H(2)O(2) substantially reduced total cellular PTPase activity to a degree approximately equivalent to that of pervanadate, a well known PTPase inhibitor. Further, stimulation of untransformed cells with H(2)O(2) or pervanadate increased tyrosine phosphorylation of each of the most prominent known substrates of BCR/ABL, including c-ABL, c-CBL, SHC, and SHP-2. Treatment of the BCR/ABL-expressing cell line MO7/p210 with the reducing agents pyrrolidine dithiocarbamate or N-acetylcysteine reduced the accumulation of ROS and also decreased tyrosine phosphorylation of cellular proteins. Further, treatment of MO7e cells with H(2)O(2) or pervanadate increased the tyrosine kinase activity of c-ABL. Drugs that alter ROS metabolism or reactivate PTPases may antagonize BCR/ABL transformation.  相似文献   

20.
Reactive oxygen species (ROS) generation in mitochondria as a side product of electron and proton transport through the inner membrane is important for normal cell operation as well as development of pathology. Matrix and cytosol alkalization stabilizes semiquinone radical, a potential superoxide producer, and we hypothesized that proton deficiency under the excess of electron donors enhances reactive oxygen species generation. We tested this hypothesis by measuring pH dependence of reactive oxygen species released by mitochondria. The experiments were performed in the media with pH varying from 6 to 8 in the presence of complex II substrate succinate or under more physiological conditions with complex I substrates glutamate and malate. Matrix pH was manipulated by inorganic phosphate, nigericine, and low concentrations of uncoupler or valinomycin. We found that high pH strongly increased the rate of free radical generation in all of the conditions studied, even when DeltapH=0 in the presence of nigericin. In the absence of inorganic phosphate, when the matrix was the most alkaline, pH shift in the medium above 7 induced permeability transition accompanied by the decrease of ROS production. ROS production increase induced by the alkalization of medium was observed with intact respiring mitochondria as well as in the presence of complex I inhibitor rotenone, which enhanced reactive oxygen species release. The phenomena revealed in this report are important for understanding mechanisms governing mitochondrial production of reactive oxygen species, in particular that related with uncoupling proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号