首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S Iizuka  A Yoshida 《Enzyme》1987,37(3):159-163
Human blood group H substance is produced from its percursor by the action of (alpha 1----2)-fucosyltransferase. In a classical model, the Se gene that determines secretor status is a regulatory gene controlling the expression of H gene-specified fucosyltransferase in the secretory tissues. However, recent biochemical evidence supports a new genetic model in which the H and Se genes are both structural genes encoding two fucosyltransferases with different characteristics. The H gene-specified enzyme (H enzyme) is absent in secretory tissues and secretory fluids, while the Se gene-specified enzyme (Se enzyme) is missing in hematopoietic tissues. The H enzyme has a much lower Km for phenyl-beta-galactoside than does the Se enzyme. The tissue-dependent expression of the two enzymes was examined according to this criteria. The H enzyme was found to be predominant in the tissues of secretors examined (lung, liver, kidney, stomach, and skeletal muscle). While the Se enzyme exists in the secretor's lung, liver and kidney, very little or none is found in the stomach and skeletal muscle tissues.  相似文献   

3.
4.
5.
Tight junctions (TJs) in endothelial cells act as cell-cell adhesion structures, governing paracellular permeability (PCP). Disruption can lead to leaky vascular bed and potentially to oedema and swelling of tissues, the aetiology of mastalgia. These changes may also cause vascular spread of cancer cells. This study aimed to determine whether the function of TJs in endothelial cells can be strengthened by gamma linolenic acid (GLA), selenium (Se) and iodine (I) in the presence of 17beta-estradiol (17beta-estradiol), which causes leakage of endothelial cells by disruption of TJs in endothelium. GLA, I, and Se individually increased transendothelial resistance. The combination of all three agents also had a significant effect on TER. Addition of GLA/Se/I reduced PCP of the endothelial cells. Treatment with GLA/Se/I reversed the effect of 17beta-estradiol in reducing TER and increasing PCP. Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h there was increasing relocation to endothelial cell-cell junctions of the TJ proteins Claudin-5, Occludin, and ZO-1. Interestingly, this relocation was particularly evident with treatments containing I when probing with Claudin-5 and those containing Se for Occludin. There was a small increase in overall protein levels when examined by Western blotting after treatment with GLA/Se/I when probed with Claudin-5 and Occludin. We report that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells, by way of regulating the distribution of Claudin-5, Occludin, and ZO-1. Interestingly, this combination was also able to completely reverse the effect of 17beta-estradiol in these cells.  相似文献   

6.
7.
The effect of Se(IV) and Cu(II) ions on the antibacterial activity of aflatoxins and ochratoxin A (mycotoxins) was studied in BioArena as a complex bioautographic system. In the presence of 0.23 and 0.46 mg/100 mL Se(IV) the inhibition zones of mycotoxins were decreased, however, lower concentration (0.046 mg/100 mL) increased the antibacterial effect of aflatoxin B1. Cu(II) (1.53 mg/100 mL) enhanced the toxicity of mycotoxins. The results supported the possible role of formaldehyde and its reaction products (e.g. 1O2, O3) in the antibacterial-toxic action of mycotoxins. Cu(II) can probably generate and mobilise the formaldehyde molecules and so it could increase the toxicity with its potential reaction products. It is possible that the enzymatic or spontaneous methylation of Se(IV) takes place through formaldehyde, which may cause partial formaldehyde depletion in the system. The enhanced antibacterial effect at low concentration Se(IV) is overlapping with the often experienced prooxidant effect in cases of natural antioxidants.  相似文献   

8.
The efferent pathways involved in the tachycardia induced by intracisternal injections of the N-terminal galanin fragment (1-15) (GAL (1-15)) and galanin (GAL (1-29)) has been evaluated in rats pretreated with the cholinergic antagonist atropine or the beta-antagonist propranolol. The pretreatment with propranolol significantly blocked the tachycardic and vasopressor effect produced by intracisternal injection of GAL (1-15) (p<0.05), but the pretreatment with atropine did not modify these cardiovascular effects. However, the cardiovascular response elicited by GAL (1-29) is modified by the pretreatment with atropine (p<0.05) but not by propranolol. These findings demonstrate that the central cardiovascular action of GAL (1-15), but not GAL (1-29), is mediated by beta-receptor stimulation and this suggests the existence of a different pathway involved in the cardiovascular response produced by the N-terminal galanin fragment as compared with the parent molecule GAL (1-29).  相似文献   

9.
10.
During the last decade, DNA mutations in the porcine ryanodine receptor 1 gene (RYR1, C1843T) and the estrogen receptor 1 gene (ESR1, T1665G), have been widely used in marker-assisted selection (MAS) for the pig industry. These 2 well-characterized SNPs in RYR1 and ESR1 are responsible for porcine stress syndrome (PSS) and litter size, respectively. Here, we describe a reliable, high-efficiency method for the genotyping of these 2 genes using the high-resolution melting (HRM) method. The HRM approach exhibited high-accuracy and repeatability, comparable with the classic PCR-restriction fragment length polymorphism (PCR-RFLP) approach, and is potentially suitable for large-scale genotyping in commercial pig farms.  相似文献   

11.
12.
Two integrin-type collagen receptors, alpha(1)beta(1) and alpha(2)beta(1), are structurally very similar. However, cells can concomitantly express the both receptors and they might have independent functions. Here, Chinese hamster ovary (CHO) cells, which lack endogenous collagen receptors, were transfected with either alpha(1) or alpha(2) integrin cDNA. Cells were allowed to adhere to various collagen types and their integrin function was tested by observing the progression of cell spreading. The cells expressing alpha(1)beta(1) integrin could spread on collagen types I, III, IV, and V but not on type II, while alpha(2)beta(1) integrin could mediate cell spreading on collagen types I-V. Type XIII is a transmembrane collagen and its interaction with the integrins has not been previously studied. CHO-alpha1beta1 cells could spread on human recombinant type XIII collagen, unlike CHO-alpha2beta1 cells. Integrins alpha(1)beta(1) and alpha(2)beta(1) recognize collagens with the specific alphaI domains. The alpha(1)I and alpha(2)I domains were produced as recombinant proteins, labeled with europium and used in a sensitive solid-phase binding assay based on time-resolved fluorescence. alpha(1)I domain, unlike the alpha(2)I domain, could attach to type XIII collagen. The results indicate, that alpha(1)beta(1) and alpha(2)beta(1) have different ligand binding specificity. Distinct recognition of different collagen subtypes by the alphaI domains can partially explain the differences seen in cell spreading. However, despite the fact that CHO-alpha1beta1 cells could not spread on type II collagen alpha(1)I domain could bind to this collagen type. Thus, the cell spreading on collagens may also be regulated by factors other than the integrins.  相似文献   

13.
14.
Mumps virus was grown in embryonated chicken eggs in the presence of radioactive seleno-(75Se)-methionine. Virus in the allantoic and amniotic fluids was concentrated in a sucrose density gradient, and a peak of viral material coincided with a significant peak of 75Se-radioactivity. The radioactivity was acid-insoluble and remained associated with the virus after purification by erythrocyte adsorption and elution and centrifugation on a second sucrose density gradient. After amino-acid hydrolysis of the radioactive virus, only 75Se-methionine was recovered by chromatographic analysis. These results demonstrate that the radioactive 75Se-methionine was incorporated into protein of infectious mumps virus.  相似文献   

15.
16.
Active NF-kappaB renders malignant hepatocytes refractory to the growth inhibitory and pro-apoptotic properties of transforming growth factorbeta1 (TGF-beta1). NF-kappaB counteracts TGF-beta1-induced apoptosis through up-regulation of downstream target genes, such as XIAP and Bcl-X(L), which in turn inhibit the intrinsic pathway of apoptosis. In addition, induction of NF-kappaB by TGF-beta1 inhibits JNK signaling, thereby attenuating TGF-beta1-induced cell death of normal hepatocytes. However, the mechanism involved in the negative cross-talk between the NF-kappaB and JNK pathways during TGF-beta1 signaling has not been determined. In this study, we have identified the XIAP gene as one of the critical mediators of NF-kappaB-mediated suppression of JNK signaling. We show that NF-kappaB plays a role in the up-regulation of XIAP gene expression in response to TGF-beta1 treatment and forms a TGF-beta1-inducible complex with TAK1. Furthermore, we show that the RING domain of XIAP mediates TAK1 polyubiquitination, which then targets this molecule for proteosomal degradation. Down-regulation of TAK1 protein expression inhibits TGF-beta1-mediated activation of JNK and apoptosis. Conversely, silencing of XIAP promotes persistent JNK activation and potentiates TGF-beta1-induced apoptosis. Collectively, our findings identify a novel mechanism for the regulation of JNK activity by NF-kappaB during TGF-beta1 signaling and raise the possibility that pharmacologic inhibition of the NF-kappaB/XIAP signaling pathway might selectively abolish the pro-oncogenic activity of TGF-beta1 in advanced hepatocellular carcinomas (HCCs) without affecting the pro-apoptotic effects of TGF-beta1 involved in normal liver homeostasis.  相似文献   

17.
The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with “SL” indicating “stalkless”). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and β-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent.  相似文献   

18.
The lysophospholipid, sphingosine 1-phosphate (S1P), regulates a multitude of cellular functions by activating specific G protein-coupled receptors (GPCRs) (S1P(1-5), plus three newly identified S1P receptors). The G(i)-coupled S1P(1) receptor inhibits adenylyl cyclase, stimulates mitogen-activated protein kinases (MAP kinases) and cell migration, and is required for blood vessel maturation. Here, we report that S1P(1) inhibits Ca(2+) signalling in a number of cell types. In HEK-293 cells, which endogenously express S1P(1-3), overexpression of S1P(1) reduced intracellular free Ca(2+) concentration ([Ca(2+)](i)) increases induced by various receptor agonists as well as thapsigargin. The inhibitory Ca(2+) signalling of S1P(1) was blocked by pertussis toxin (PTX) and the protein kinase C (PKC) inhibitor, G?6976, and imitated by phorbol ester and overexpression of classical PKC isoforms. Activation of S1P(1) stably expressed in RH7777 cells, which endogenously do not express S1P receptors, also inhibited Ca(2+) signalling, without mediating Ca(2+) mobilization on its own. It is concluded that the widely expressed S1P receptor S1P(1) inhibits Ca(2+) signalling, most likely via G(i) proteins and classical PKC isoforms. Co-expression of S1P(1) with S1P(3), but not S1P(2), reversed the inhibitory effect of S1P(1), furthermore suggesting a specific interplay of S1P receptor subtypes usually found within a single cell type.  相似文献   

19.
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号