首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns and kinetics of water uptake by soybean seeds   总被引:1,自引:0,他引:1  
Soybean [Glycine max (L.) Merr.] plants produce some seeds (called stone or impermeable seeds) that do not take up water for long periods of time. The present investigation confirmed that the stone seed trait is a feature of the seed coat: isolated embryos from both stone and permeable seeds took up water equally quickly. A whole, permeable seed typically imbibed water initially through its dorsal side, forming wrinkles in the seed coat and delivering water to the underlying cotyledons. Later, some lateral movement of water through the coat occurred, presumably through the air spaces of the osteosclereid layer. Imbibition by seeds was a two-phase process, the first dominated by hydration of the seed coat and the second by hydration of the cotyledons, which was rate-limited by the coat. When hydrated, coats of stone seeds were permeable to water but their hydraulic conductivity, as measured with a pressure probe, was smaller than that of coats from permeable seeds by a factor of five. Hydrated coats of both permeable and stone seeds showed weak osmometer properties.  相似文献   

2.
POWELL  ALISON A. 《Annals of botany》1989,63(1):169-175
Comparisons of five pairs of isogenk lines of peas, differingonly in the A gene for seed coat colour showed that white seeds(genotype aa) imbibed more rapidly than coloured seeds (AA),suffered greater imbibition damage revealed by dead tissue onthe cotyledons, and higher solute leakage. Seed-coat pigmentationwas closely associated with slow water uptake, since when expressionof the A gene was suppressed by the recessive pollens gene,the resulting white seeds {palpal AA) imbibed rapidly. The slowwater uptake by coloured seeds was not due to the restrictionof water entry by the seed coat since the differences in imbibitionrate were maintained when a portion of the seed coat was removedand seeds were imbibed with the exposed cotyledon in contactwith moist filter paper. Imbibition of similarly treated seedsby immersion in polyethylene glycol solutions (1–4%) whichincreased the seed/solution wettability, had little effect onthe water uptake of coloured seeds compared to imbibition inwater whereas that of white seeds increased in the first 10mins imbibition. Poor wettability of the inner surface of colouredseed coats did not therefore explain the slow imbibition ofthese seeds. The white seed coats loosened rapidly during imbibitionwhilst the coloured seed coats remained closely associated withthe cotyledons suggesting that the adherence of the seed coatto the cotyledons and therefore the ease of access of waterbetween the testa and cotyledons determines the rate of imbibition.The rapid water uptake by white-coated seeds and the subsequentimbibition damage may explain the high incidence of infectionof these seeds by the soil-bome fungus Pythhan after 2 d insoil. Improved seed quality and emergence may therefore be achievedby breeding for seed coat characteristics leading to reducedrates of imbibition Pisum sativum, isogenic lines, A gene, seed coat colour, imbibition, imbibition damage, wettability, pollens gene, seed quality, grain legumes  相似文献   

3.
Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus.  相似文献   

4.
The seed coat of Pisum elatius is normally impermeable to water. When seeds are dried in the absence of oxygen their coats are totally permeable to water. Structural differences are observed between permeable and impermeable seed coats. In the genus Pisum, species with normally impermeable seed coats have a high content of phenolics and of catechol oxidase, while seed coats of P. sativum contain very little catechol oxidase and have a very low content of phenolics. Such differences are not noted in the cotyledons. We hypothesized that during dehydration of seeds, oxidation of phenolic compounds in seed coats through catalysis of catechol oxidase in presence of O2 might render the seed coats impermeable to water.  相似文献   

5.
The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.  相似文献   

6.
花生种皮蜡质和角质层与黄曲霉侵染和产毒的关系   总被引:14,自引:0,他引:14  
黄曲霉侵染花生的研究表明,种皮破损的黄曲霉毒素含量显著高于种皮完整的,种皮对黄曲霉侵染和产毒起着重要屏障作用。采用氯仿去除种皮蜡质,用KOH或角质酶去除种皮角质层后,种子黄曲霉感染率和黄曲霉毒素含量显著提高。种皮蜡质和角质层同时去除的与种皮破损的黄曲霉感染率和毒素含量差异不显著,表明种皮的抗性成份主要是蜡质和角质层。种皮蜡质含量测定和种皮表面扫描电镜观察表明,蜡质的含量和角质层的厚度与品种的抗性有关。抗性品种种皮蜡质含量显著高于感病品种。种皮蜡质提取物在体外抑菌效果不显著。说明蜡质的抗性作用主要是物理性阻止黄曲霉菌的穿透。  相似文献   

7.
Injecting IAA, GA3, and KT into soybean ( Gtycine max L. ) seeds in vivo on intact plant of 30 d after anthesis, the ABA content, invertase and ATPase activity in seed coat and cotyledons were tested respectively. It was revealed that the content of endogenous ABA was correlated with the invertase and ATPase activity. The ABA level increased was 24% and 65 % in seed coat by using 10-6 mol/L LAA and 10-6 moL/L KT and decreased 19% and 41% in cotyledons, respectively. Correlatively, ABA stimulated invert&se activity and inhibited ATPase activity in seed coat, but the reverse effect of ABA was seen in cotyledons. Treated with 10-6 mol/L GA3, ABA level droped by 42% in seed coat and by 22% in cotyledons. Activities of invertase and ATPase were inhibited in seed coat but stimulated in cotyledons. In studying the changes of sugar and protein in the cotyledons, it was shown that ABA was involved in the assimilate accumulation in soybean seeds. The effects of exogenous hormones on endogenous ABA level and ABA in relation to assimilate accumulation in the cotyledons were discussed.  相似文献   

8.
The apoplastic sucrose concentration at the interface between cotyledons and surrounding seed coats of developing soybeans (Glycine max L. Merr. cv Wye) was found by three indirect methods to be in the range of 150 to 200 millimolar. This is an order of magnitude higher than has been reported elsewhere for soybean. It was also higher than the overall sucrose concentrations in the cotyledons and seed coats, each of which was approximately 90 millimolar. By defoliating plants 24 hours before measurement, both the overall sucrose concentration in the cotyledons and the interfacial apoplastic sucrose concentration were reduced by three-fourths. However, there was no day/night difference in overall tissue sucrose concentration of cotyledons or seed coats from intact plants suggesting the existence of a homeostatic mechanism compensating for the diurnal photosynthetic cycle. About 7 hours were required for a tritiated polyethylene glycol-900 solution to fully permeate developing cotyledons (from ~220 milligram fresh weight embryos), implying high diffusion resistance through the tissue.

These results indicate that a high interfacial sucrose concentration may exist in vivo. They suggest that the saturable carrier-mediated component of sucrose uptake may be of little physiological significance in the outermost cell layers of the cotyledons.

  相似文献   

9.
红松种子休眠与种皮的关系   总被引:11,自引:0,他引:11  
本文探讨红松(Pinus koraiensis)种子休眠与其种皮之间的关系。夹破中种皮后,种子萌发率很低。在离体胚培养基中外加 ABA 及经 ABA 溶液浸泡种子的萌发实验表明,ABA也不是导致休眠的关键因素。试验确认红松种子存在透气障碍,即中、内种皮对氧气的进入都有阻碍作用。经低温砂藏后,种皮的阻碍作用明显减小。种皮的透气性障碍可能是诱导休限的主导因素。  相似文献   

10.
碳离子束辐照拟南芥介导外源基因转移的研究   总被引:2,自引:0,他引:2  
采用700keV或4.0MeV碳离子束辐照拟南芥种子,通过对样品的显微摄影,发现随着辐照剂量的增加,碳离子束对种子表面的损伤逐渐加剧,特别是在4.0MeV碳离子束辐照下,当剂量达到1×1014ions·cm-2后,种皮局部逐渐被刻蚀殆尽,甚至造成种皮局部破裂。对拟南芥种子进行台盼蓝染色后的显微观测显示,碳离子束辐照可以导致拟南芥种皮细胞着染,在剂量较大的情况下,部分皮下细胞也可着染,表明碳离子束可作用到皮下细胞,为外源基因提供导入的通道。GUS基因导入后的组织化学检测表明:质粒pCAMBIA1301能够进入4.0MeV碳离子束辐照后的拟南芥种子,并在种子和幼芽中获得瞬间表达。  相似文献   

11.
  • The seed coat composition of white (JS 335) and black (Bhatt) soybean (Glycine max (L.) Merr) having different water permeability was studied.
  • Phenols, tannins and proteins were measured, as well as trace elements and metabolites in the seed coats.
  • The seed coat of Bhatt was impermeable and imposed dormancy, while that of JS 335 was permeable and seeds exhibited imbibitional injury. Bhatt seed coats contained comparatively higher concentrations of phenols, tannins, proteins, Fe and Cu than those of JS 335. Metabolites of seed coats of both genotypes contained 164 compounds, among which only 14 were common to both cultivars, while the remaining 79 and 71 compounds were unique to JS 331 and Bhatt, respectively.
  • Phenols are the main compounds responsible for seed coat impermeability and accumulate in palisade cells of Bhatt, providing impermeability and strength to the seed coat. JS 335 had more cracked seed coats, mainly due to their lower tannin content. Alkanes, esters, carboxylic acids and alcohols were common to both genotypes, while cyclic thiocarbamate (1.07%), monoterpene alcohols (1.07%), nitric esters (1.07%), phenoxazine (1.07%) and sulphoxide (1.07%) compounds were unique to the JS 335 seed coat, while aldehydes (2.35%), amides (1.17%), azoles (1.17%) and sugar moieties (1.17%) were unique to Bhatt seed coats. This study provides a platform for isolation and understanding of each identified compound for its function in seed coat permeability.
  相似文献   

12.
BACKGROUND AND AIMS: Seeds of Grevillea linearifolia germinate following fire, and have seed-coat dormancy broken by smoke and heat shock. Smoke breaks seed coat dormancy in Emmenanthe penduliflora by altering the permeability of the seed coat to an internal germination inhibitor, which subsequently escapes. This model was tested for in G. linearifolia by investigating the permeability of the seed coat to diffusion of high-molecular-weight compounds, and whether this changed after exposure to fire cues. METHODS: Germination response of the seeds to heat shock, smoke or heat + smoke was tested. Penetration of Lucifer Yellow dye into intact seeds was examined after 24 and 48 h of exposure, and penetration of the dye from the inside of the seed coat outwards was examined after 24 h. Histochemical staining with Nile Red and Acridine Orange was used to locate cuticles, suberin and lignin. KEY RESULTS: Twenty-three per cent of untreated seeds germinated; heat shock and smoke increased germination additively up to approx. 80 % for both cues combined. Lucifer Yellow did not penetrate fully through the seed coat of untreated seeds, whether diffusing inwards or outwards. Three barriers to diffusion were identified. Treatment with heat or smoke slightly increased penetration of the dye, but did not completely remove the barriers. Suberin was identified in secondary walls of exotestal and mesotestal cells, and was absent from primary cell walls. Movement of Lucifer Yellow occurred through the middle lamella and primary cell wall of suberized cells; movement of the dye was impeded where suberin was absent. CONCLUSIONS: Fire cues did not significantly decrease barriers to diffusion of high-molecular-weight compounds in the seed coat of Grevillea, and must be breaking dormancy by another mechanism.  相似文献   

13.
Seeds of Raphanus sativus L. subjected to accelerated ageing were investigated for reactive oxygen species (ROS) release and for content of vitamin E (tocopherol, TOC, and tocotrienol, TOC-3), fatty acids and phytosterols in seed coats, cotyledons and embryonic axes during germination. In unaged seeds, ROS release occurred mainly in seed coats of non-imbibed seeds and in seedlings (48?h of imbibition). TOC and TOC-3 were mainly represented by the ??-isoform, abundant in embryonic axes. Fatty acids were mainly found in cotyledons. In seed coat and embryonic axis, phytosterols consisted mainly of sitosterols. The effects of ageing were mainly visible in embryonic axes at 48?h of imbibition. Deterioration was associated with a decrease in fresh weight increase percentage, germination percentage, ??-TOC and total fatty acid content. An increase in ROS release from seed coats and in ??-TOC, ??-TOC, ??-TOC-3 content in embryonic axis was also observed. The use of ??-TOC and total fatty acids in embryonic axis as parameters of seed quality evaluation during storage was suggested.  相似文献   

14.
Because jasmonic acid regulates a number of processes, including the expression of vegetative storage proteins in soybean (Glycine max L.) leaves, the relative activity of a specific portion of the jasmonic acid biosynthetic pathway in soybean tissues was examined. Allene oxide synthase and allene oxide cyclase were examined because they constitute a branch point leading specifically from 13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid to 12-oxo-phytodienoic acid, the precursor of jasmonic acid. From growing plants, seed coats (hila plus testae) of green fruits (38 d post-anthesis) were most active, eliciting about 1.5 times greater activity on a per milligram of protein basis than the next most active tissue, which was the pericarp. Leaves from fruiting plants were only one-seventh as active as seed coats, and activities in both immature cotyledons and embryonic axes were very low. No activity was detected in any part of stored, mature seeds. After 72 h of germination of stored seeds, a small amount of activity, about 4% of that in immature seed coats, was found in the plumule-hypocotyl-root, and no activity was detected in the cotyledons. The high levels of jasmonic acid biosynthetic enzymes in soybean pericarp and seed coat suggest a role for jasmonic acid in the transfer of assimilate to seeds.  相似文献   

15.
During the storage phase, cotyledons of developing pea seeds are nourished by nutrients released to the seed apoplasm by their maternal seed coats. Sucrose is transported into pea cotyledons by sucrose/H+ symport mediated by PsSUT1 and possibly other sucrose symporters. PsSUT1 is principally localised to plasma membranes of cotyledon epidermal and subepidermal transfer cells abutting the seed coat. We tested the hypothesis that endogenous sucrose/H+ symporter(s) regulate sucrose import into developing pea cotyledons. This was done by supplementing their transport activity with a potato sucrose symporter (StSUT1), selectively expressed in cotyledon storage parenchyma cells under control of a vicilin promoter. In segregating transgenic lines, enhanced [(14)C]sucrose influx into cotyledons above wild-type levels was found to be dependent on StSUT1 expression. The transgene significantly increased (approximately 2-fold) transport activity of cotyledon storage parenchyma tissues where it was selectively expressed. In contrast, sucrose influx into whole cotyledons through the endogenous epidermal transfer cell pathway was increased by only 23% in cotyledons expressing the transgene. A similar response was found for rates of biomass gain by intact cotyledons and by excised cotyledons cultured on a sucrose medium. These observations demonstrate that transport activities of sucrose symporters influence cotyledon growth rates. The attenuated effect of StSUT1 overexpression on sucrose and dry matter fluxes by whole cotyledons is consistent with a large proportion of sucrose being taken up at the cotyledonary surface. This indicates that the cellular location of sucrose transporter activity plays a key role in determining rates of sucrose import into cotyledons.  相似文献   

16.
The purpose of this study was to investigate the effects of various presowing treatments on the germinability (final germination percentage) and germination rate of loquat seeds in order to increase seedling production in nurseries (applied research) as well as provide answers for important physiological issues related to loquat seeds and their seed coat (basic research). Three experiments were carried out with various pre-sowing treatments. These treatments included full or partial removal of seed coat (perisperm), partial cutting of cotyledons as well as moist chilling at 5°C for 13 days and/or soaking the seeds in water or 250 ppm gibberellic acid (GA3) solution for 24 h. According to the results, cotyledons excision resulted in delayed germination, regardless of the presence or absence of the seed coat in comparison with the decoated seeds that demonstrated the highest germination rate amongst them. In addition, even the partial excision of seed coats affected positively both the germinability and the germination rate, compared to the control-intact seeds. Furthermore, control-intact seeds had a higher germination percentage when exposed to moist chilling independently of the application or not of gibberellin; while the combination of gibberellin application and moist chilling improved both the percentage and the rate of germination of decoated seeds. In conclusion, the role of perisperm (seed coat) in the germination procedure of loquat seeds seems to be important, indicating the existence of seed coat-imposed dormancy on loquat seeds. Finally, the existence of a mild endogenous embryo-dormancy on loquat is also discussed.  相似文献   

17.
Abscisic Acid and its relationship to seed filling in soybeans   总被引:30,自引:10,他引:20       下载免费PDF全文
The effect of exogenous abscisic acid (ABA) on the rate of sucrose uptake by soybean (Glycine max L. Merr.) embryos was evaluated in an in vitro system. In addition, the concentrations of endogenous ABA in seeds of three soybean Plant Introduction (PI) lines, differing in seed size, were commpared to their seed growth rates. ABA (10−7 molar) stimulated in vitro sucrose uptake in soybean (cv `Clay') embryos removed from plants grown in a controlled environment chamber, but not in embryos removed from field-grown plants of the three PI lines. However, the concentration of ABA in seeds of the three field-grown PI lines correlated well with their in situ seed growth rates and in vitro [14C] sucrose uptake rates.

Across genotypes, the concentration of ABA in seeds peaked at 8.5 micrograms per gram fresh weight, corresponding to the time of most rapid seed growth rate, and declined to 1.2 micrograms per gram at physiological maturity. Seeds of the large-seeded genotype maintained an ABA concentration at least 50% greater than that of the small-seeded genotype throughout the latter half of seed filling. A higher concentration of ABA was found in seed coats and cotyledons than in embryonic axes. Seed coats of the large-seeded genotype always had a higher concentration of ABA than seed coats of the small-seeded line. It is suggested that this higher concentration of ABA in seed coats of the large-seeded genotype stimulates sucrose unloading into the seed coat apoplast and that ABA in cotyledons may enhance sucrose uptake by the cotyledons.

  相似文献   

18.
The aim of this work was to investigate the occurrence of phosphoenolpyruvate carboxykinase (PEPCK) in developing pea (Pisum sativum) seeds in relation to their nitrogen supply. PEPCK was present throughout development, with the peak of PEPCK protein and activity in the seed coat and cotyledons preceding protein accumulation in the cotyledons. It showed a different developmental pattern from enzymes involved in amino acid metabolism (phosphoenolpyruvate carboxylase, glutamine synthetase and glutamate dehydrogenase). Immunolocalization showed that PEPCK was present in parts of the developing seed that are involved in the transport and metabolism of assimilates. Early in development, it was associated with the inner integument of the ovule, the endospermic cytoplasm and the outer cells of the embryo. In the middle of development, around the peak of activity, PEPCK was abundant at the outer surface of the developing cotyledons, in the embryonic axis and in the vasculature of the seed coat. Later in development, PEPCK was associated with the embryonic leaf primordia and meristem and cortex of the radicle. PEPCK protein was strongly induced in vitro in the seed coat by nitrate, ammonium and asparagine, in the cotyledons by asparagine and in planta by the supply of nitrogen, which led to an increase in asparagine secretion by empty seed coats. It is suggested that PEPCK is involved in the metabolism of nitrogenous solutes in developing pea seeds.  相似文献   

19.
Most soybean cultivars produce buff colored seeds due to a seed coat specific siRNA mechanism. This phenomenon is specifically limited to the seed coat and produces a strong visual effect, thus, a strategy to evade the silencing was used to produce a maternal transgenic marker for soybeans. Expression of a rice chalcone synthase transgene with little DNA sequence homology to the soybean siRNAs resulted in dark colored seed coats. This phenotype is the result of anthocyanin pigment production and does not appear to affect other tissues. This novel approach for producing an easily scored transgenic marker for soybean will facilitate high-throughput screening and analysis of transgenic soybean.  相似文献   

20.
A method for direct identification and quantitative measurementsof mixed or pure gases diffusing through seed coats was devisedto test the hypothesis that the dormancy of Xanthium pennsylvanicumseeds is caused by oxygen-impermeable seed coats. The diffusionof oxygen through seed coats of X. pennsylvanicum was shownto obey Fick's first law. Oxygen diffused through the lowerand upper seed coats at the same rate. Imbibed lower and upperseeds showed essentially equal oxygen uptake rates before radicleemergence. This uptake was lower than the rate at which oxygencan diffuse into the seed. Therefore upper seeds are not dormantbecause of seed coat restriction of oxygen diffusion. The relationshipsof oxygen with other factors involved in seed dormancy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号