首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of the antioxidant system to salt stress was studied in the roots of the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (Lem) and its wild salt-tolerant relative L. pennellii (Corr.) D'Arcy accession Atico (Lpa). Roots of control and salt (100 m M NaCl)-stressed plants were sampled at various times after commencement of salinization. A gradual increase in the membrane lipid peroxidation in salt-stressed root of Lem was accompanied with decreased activities of the antioxidant enzymes: superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and decreased contents of the antioxidants ascorbate and glutathione and their redox states. In contrast, increased activities of the SOD, CAT, APX, monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), and increased contents of the reduced forms of ascorbate and glutathione and their redox states were found in salt-stressed roots of Lpa, in which the level of membrane lipid peroxidation remained unchanged. It seems that the better protection of Lpa roots from salt-induced oxidative damage results, at least partially, from the increased activity of their antioxidative system.  相似文献   

2.
The activities of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and SOD were studied in cell organelles of the cultivated tomato Lycopersicon esculentum (M82) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa). All four enzymes of the ascorbate-glutathione cycle were present in chloroplasts/plastids, mitochondria and peroxisomes of leaf and root cells of both tomato species. In all leaf and root organelles of both species, the activity of MDHAR was similar to, or higher than, that of APX, while the activity of DHAR was one order of magnitude lower than that of MDHAR. Based on these results, it is suggested that in the organelles of both tomato species, ascorbate is regenerated mainly by MDHAR. In both tomato species, GR activity, and to a lesser extent DHAR activity, was found to reside in the soluble fraction of all leaf and root cell organelles, while APX and MDHAR activities were distributed between the membrane and soluble fractions. A higher SOD to APX activity ratio in all Lpa organelles was the major difference between the two tomato species. It is possible that this higher ratio contributes to the inherently better protection of Lpa from salt stress, as was previously reported.  相似文献   

3.
The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H2O2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.  相似文献   

4.
The response of the antioxidative systems of leaf cell mitochondria and peroxisomes of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa) to NaCl 100 mM stress was investigated. Salt-dependent oxidative stress was evident in Lem mitochondria as indicated by their raised levels of lipid peroxidation and H2O2 content whereas their reduced ascorbate and reduced glutathione contents decreased. Concomitantly, SOD activity decreased whereas APX and GPX activities remained at control level. In contrast, the mitochondria of salt-treated Lpa did not exhibit salt-induced oxidative stress. In their case salinity induced an increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-dependent peroxidase (GPX). Lpa peroxisomes exhibited increased SOD, APX, MDHAR and catalase activity and their lipid peroxidation and H2O2 levels were not affected by the salt treatment. The activities of all these enzymes remained at control level in peroxisomes of salt-treated Lem plants. The salt-induced increase in the antioxidant enzyme activities in the Lpa plants conferred cross-tolerance towards enhanced mitochondrial and peroxisomal reactive oxygen species production imposed by salicylhydroxamic acid (SHAM) and 3-amino-1,2,4-triazole (3-AT), respectively.  相似文献   

5.
The effect of salinity on the antioxidative system of root mitochondria and peroxisomes of a cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) was studied. Salt stress induced oxidative stress in Lem mitochondria, as indicated by the increased levels of lipid peroxidation and H(2)O(2). These changes were associated with decreased activities of superoxide dismutase (SOD) and guaiacol peroxidases (POD) and contents of ascorbate (ASC) and glutathione (GSH). By contrast, in mitochondria of salt-treated Lpa plants both H(2)O(2) and lipid peroxidation levels decreased while the levels of ASC and GSH and activities of SOD, several isoforms of ascorbate peroxidase (APX), and POD increased. Similarly to mitochondria, peroxisomes isolated from roots of salt-treated Lpa plants exhibited also decreased levels of lipid peroxidation and H(2)O(2) and increased SOD, ascorbate peroxidase (APX), and catalase (CAT) activities. In spite of the fact that salt stress decreased activities of antioxidant enzymes in Lem peroxisome, oxidative stress was not evident in these organelles.  相似文献   

6.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt tolerant relative L. pennellii (Correll) D'Arcy accession PE-47, were grown during spring-summer 1989 under unheated plastic greenhouse conditions. Plants were submitted to two different salt treatments using 0 and 140 mM NaCI irrigation water. In both tomato species, salinity caused a proportionally larger reduction in leaf area than in leaf weight and, in L. esculentum , a proportionally larger decrease in stem weight than in leaf weight. Daily variations in leaf water potential (Ψ1) were fundamentally due to changes in the evaporative demand of the atmosphere. Reductions in Ψ1 due to salinity were consistent only in L. esculentum . In all the conditions studied, leaf turgor was maintained. Leaf conductance (g1)was higher in L. esculentum than in L. pennellii .Salinity induced a clear reduction in g1 levels in L. esculentum whereas, in L. pennellii , this reduction was noted only in May. In both species the Ψos (leaf osmotic potential at full turgor) levels were reduced by salinity. The bulk modulus of elasticity (E) and relative water content at turgor loss point (RWCtlp) were not affected by salinity. The RWCtlp values in L. pennellii seem to be controlled by E values.  相似文献   

7.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

8.
Acylsugars exuded from type IV trichomes mediate the multiple pest resistance found in the wild tomato species, Lycopersicon pennellii. A marker-assisted selection breeding program was used to attempt the transfer of the ability to accumulate acylsugars to cultivated tomato. RFLP and PCR-based markers were used through three backcross generations to select plants containing 5 target regions associated by QTL analysis with acylsugar accumulation. The BC1F1 plant selected possessed all 5 target regions and accumulated acylsugars at a moderate level similar to that of the interspecific F1 control. The BC2F1 and BC3F1 selections contained complementary subsets of the 5 target regions and did not accumulate acylsugars. BC3F1 plants with complementary subsets of the 5 target regions were intermated to produce populations segregating for the 5 target regions. From 1000 BC3F1-intermated plants, three plants were found which accumulated acylsugars at low levels and contained 3 to 5 of the target regions. The recovery of acylsugar accumulation in progeny of the intermated BC3F1 plants supports the involvement of at least some of the 5 target regions in acylsugar biosynthesis. However, since the levels of acylsugars accumulated by these plants were lower than that of the interspecific F1, it is likely that another, as of yet unidentified, region is necessary for accumulation of higher levels of acylsugars.  相似文献   

9.
Changes in the antioxidative enzyme activities (SOD, CuZnSOD, GSH-Px, GST), as well as TBARS content in 5-week-old tomato (Lycopersicon esculentum Mill. cv “Perkoz”) roots were examined 1, 3 h (short-term stress) and 1–14 days (long-term stress) after a single application of 50 mM (mild stress) and 150 mM NaCl (severe stress). The severe stress caused an increase in GST, GSH-Px and SODs activities from the beginning of the experiment while mild stress induced enhancement of GST activity from the second day of experiment. The maximum increase in SODs after both NaCl solutions were applied and in GST activity after the higher NaCl dose on the second day of the experiment was observed. Moreover, after 1 h of NaCl treatment with both tested NaCl solutions, the highest induction of GSH-Px activity appeared. TBARS content was elevated from the first hour of salt stress and decreased only 14 days after 50 mM NaCl application which was accompanied by high induction of GSH-Px activity. In conclusion, enhanced activities of tested enzymes indicate their involvement in early and late defence systems under salinity stress. Moreover, the dynamics of the changes in the antioxidant enzymes suggests that the second day following NaCl application is a crucial moment of the experiment with regard to salt-mediated oxidative stress.  相似文献   

10.
Some accessions of Lycopersicon pennellii, a wild relative of the tomato Lycopersicon esculentum, are resistant to a number of important pests of cultivated tomato due to the accumulation of acylsugars, which constitute 90% of the exudate of type-IV trichomes in L. pennellii LA716. An interspecific F2 population, created by the cross L. esculentum x L. pennellii LA 716, was surveyed for acylsugar accumulation and subjected to RFLP/QTL analysis to determine the genomic regions associated with the accumulation of acylglucoses, acylsucroses, and total acylsugars, as well as with acylglucoses as a percentage of total acylsugars (mole percent acylglucoses). Data were analyzed using MAPMAKER/QTL with and without a log10 transformation. A threshold value of 2.4 (default value for MAPMAKER/QTL) was used, as well as 95% empirically derived threshold values. Five genomic regions, two on chromosome 2 and one each on chromosomes 3, 4 and 11, were detected as being associated with one or more aspects of acylsugar production. The L. esculentum allele is partially dominant to the L. pennellii allele in the regions on chromosomes 2 and 11, but the L. pennellii allele is dominant in the region on chromosome 3. Throughout this study, we report the comparative effects of analytical methodology on the identification of acylsugar QTLs. Similarities between our results and published results for the genus Solanum are also discussed.R. W. Doerge · S.-C. Liu · J. P. Kuai contributed equally to the paper, and we ordered randomly  相似文献   

11.
The responses to NaCl of cultured leaf discs and leaflets derived from fully differentiated leaves and of shoot apices excised from the cultivated tomato Lycopersicon esculentum Mill. and its wild salt-tolerant relatives L. peruvianum (L.) Mill, and Solanum pennellii Cor were compared. The results suggest that the tolerance of the whole plant to salt depends largely on the tolerance of plant organs containing meristematic tissues rather than on tissues already differentiated. This suggestion is based on the positive correlation found between the response to NaCl of shoot apices and of the whole plant, i.e. both whole plants and apices of the wild species were more resistant to salt than those of the cultivated species. No difference was found among the species with respect to the responses of the fully differentiated parts. The ion balance (K+/Na+ and Cl/Na+) in detached leaves and apices exposed to salt was different from the balance in the same parts while attached to the salt-treated plant. This difference may be due to the severance of the excised parts from the major sites controlling the balance of ions in the whole plant.  相似文献   

12.
Recycling of carbon in the oxidative pentose phosphate pathway (OPPP) of intact pea root plastids has been studied. The synthesis of dihydroxyacetone phosphate (DHAP) and evolution of CO2 was followed in relation to nitrite reduction. A close coupling was observed between all three measured fluxes which were linear for up to 60 min and dependent upon the integrity of the plastids. However, the quantitative relationship between 1-14CO2 evolution from glucose 6-phosphate and nitrite reduction varied with available hexose phosphate concentration. When 10 mM glucose 6-phosphate was supplied to intact plastids a stoichiometry of 1.35 was observed between 14CO2 evolution and nitrite reduction. As exogenous glucose 6-phosphate was decreased this value fell, becoming 0.47 in the presence of 0.2 mM glucose 6-phosphate, indicative of considerable recycling of carbon. This conclusion was reinforced when using [2-14C]glucose-6-phosphate. The measured release of 2-14CO2 was consistent with the data for 1-14CO2, suggesting complete recycling of carbon in the OPPP. Ribose 5-phosphate was also able to support nitrite reduction and DHAP production. A stoichiometry of 2 NO 2 ? reduced: 1 DHAP synthesised was observed at concentrations of 1 mM ribose 5-phosphate or less. At concentrations of ribose 5-phosphate greater than 1 mM this stoichiometry was lost as a result of enhanced DHAP synthesis without further increase in nitrite reduction. It is suggested that this decoupling from nitrite reduction is a function of excess substrate entering directly into the non-oxidative reactions of the OPPP, and may be useful when the demand for OPPP products is not linked to the demand for reductant. The significance of recycling in the OPPP is discussed in relation to the coordination of nitrate assimilation with carbohydrate oxidation in roots and with the utilisation of carbohydrate by other pathways within plastids.  相似文献   

13.
Summary Resistance to race 3 of Fusarium wilt in the wild tomato Lycopersicon pennellii (LA 716) was previously found to be controlled by one major locus, I-3, tightly linked to Got-2 on chromosome 7. This accession was also found to carry resistance to races 1 and 2; a genetic analysis of these resistances is reported in this paper. This analysis proceeded in two steps. First, allelism tests demonstrated that race 1 and 2 resistances carried by L. pennellii were not allelic to the I and I-2 genes originally incorporated into L. esculentum from L. pimpinellifolium. Second, an interspecific backcross with L. pennellii (BC1) was used to determine the mode of inheritance of these new resistances and their chromosomal location by segregation and linkage analysis. BC1 responses to each of the races were determined using progeny tests (BC1S1). BC1S1 plants were inoculated with race 1 or 2 and evaluated after 1 month using a visual disease rating system; mean disease ratings were calculated for each BC1 individual for each race based on the progeny scores. A bimodal frequency distribution of the BC1 mean disease ratings was observed for both races, indicating that one major locus controlled resistance in each case. Statistical comparisons of the mean disease ratings of homozygous versus heterozygous individuals at each of 17 segregating enzyme loci were used to map the resistances to races 1 and 2. Tight linkage was detected between the enzyme locus Got-2 and resistances to both races, as was previously reported for the I-3 locus. Therefore, the Got-2 locus can be used as a selectable marker for resistances to all three races. The relationship of these resistances is discussed in the paper. In addition, as previously reported for race 3, significance was also detected for the chromosome segment marked by Aps-2 on chromosome 8 for both races. Currently many cultivars carry I and I-2 resistances to races 1 and 2. Incorporation of the LA 716 resistances to these two races into cultivars may reduce the likelihood of new race development.Florida Agricultural Experiment Station, Journal Series No. R-00205  相似文献   

14.
The effects of salinity and drought on the antioxidative system (SOD, POD, CAT) were studied in liquorice seedlings (Glycyrrhiza uralensis Fisch). The results showed that both salt and drought stresses could induce oxidative stress, as indicated by the increase level of lipid peroxidation. The activities of SOD and POD were up-regulated by salt and drought stress, while CAT activity decreased. An additional MnSOD isoenzyme was detected in liquorice subjected to 2%NaCl stress. The data also showed that although the activity of SOD was differentially influenced by drought and salinity, the changes of antioxidant enzyme activities subjected to drought stress follow a pattern similar to that subjected to salt stress, indicating that similar defensive systems might be involved in the oxidative stress injury in liquorice.  相似文献   

15.
Mitochondria require robust antioxidant defences to prevent lipid peroxidation and to protect tricarboxylic acid cycle enzymes from oxidative damage. Mitochondria from wild, salt‐tolerant tomato, Lycopersicon pennellii (Lpa) did not exhibit lipid peroxidation in response to high salinity (100 mm NaCl), whereas those isolated from cultivated tomato, L. esculentum (Lem), accumulated malondialdehyde. The activity, intraorganellar distribution and salt response of mitochondrial ascorbate peroxidase (mAPX) differed dramatically in the two species. In Lem mitochondria, the majority (84%) of mAPX was associated with membranes, being located either on the inner membrane, facing the intermembrane space, or on the outer membrane. Total mAPX activity did not increase substantially in response to salt, although the proportion of matrix APX increased. In contrast, 61% of Lpa mAPX activity was soluble in the matrix, the remainder being bound to the matrix face of the inner membrane. Salt treatment increased the activity of all mAPX isoforms in Lpa, without altering their intramitochondrial distribution. The membrane‐bound isoforms were detected in mitochondria of both species by western blotting and found to be induced by salt in Lpa. These observations suggest that matrix‐associated APX isoforms could act in concert with other mitochondrial antioxidants to protect against salt‐induced oxidative stress.  相似文献   

16.
Three differentially expressed cDNAs have been isolated from ozone treated tomato seedlings. Their level of expression after ozone exposure has been analysed in three tomato cultivars with different sensitivity to ozone (Nikita, Alisa Craig and Valenciano). These comparative analyses have been extended to a number of genes involved in antioxidative, wounding or pathogenesis responses, showing several differences among cultivars that could be related with their different sensitivity to ozone. Gene response to ozone was affected not only by the period and dose of ozone exposure (short time or chronic), but also by growth conditions (controlled growth chamber or field). Comparison of gene expression patterns puts on evidence the needing of validation in field of experiments performed with plants grown under controlled conditions. Our results suggest that changes in genes expression, observed after ozone treatment in field, are affected by additional factors related to environmental clues.  相似文献   

17.
The growth of the wild tomato species Lycopersicon peruvianum (L.) Mill, and L. pennellii (Correll) D'Arcy, was compared with that of the cultivated tomato, L. esculentum Mill. cv. VE 234, under conditions of reduced K+ supply. Growth was impaired less in the wild than in the cultivated species. The higher efficiency of K+ utilization in the wild species was not associated with more efficient JC uptake from the medium. The rate of K+ uptake by whole plants was similar in the three species, but the rate of uptake by detached root tips was lower in the wild species. The permeability of the plasma membrane to K+ was apparently similar in root tips of the three species, but the tonoplast permeability was much lower in the wild than in the cultivated species.  相似文献   

18.
Summary If in vitro culture is to be used for evaluating the salt tolerance of tomato hybrids and segregant populations in a breeding programme, it is previously necessary to get quick and reliable traits. In this work, growth and physiological responses to salinity of two interspecific hybrids between the cultivated tomato (Lycopersicon esculentum Mill) and its wild salt-tolerant species L pennellii are compared to those of their parents. The leaf callus of the first subculture was grown on media amended with 0, 35, 70, 105, 140, 175 and 210 mM NaCl for 40 days. Relative fresh weight growth of callus in response to increased salinity in the culture medium was much greater in L pennellii than in the tomato cultivars, and greater in the hybrids than in the wild species. Moreover, the different salt tolerance degree of hybrids was related to that of female parents. At high salt levels, only Cl accumulation was higher in L pennellii than in tomato cultivars, whereas in the hybrids both Cl, and Na+ accumulation were higher than in their parents. Proline increased with salinity in the callus of all genotypes; these increases were much higher in the tomato cultivars than in L pennellii, and the hybrids showed a similar response to that of the wild species. Salt-treated callus of the tomato cultivars showed significant increases in valine, isoleucine and leucine contents compared to control callus tissue. In contrast, these amino acids in callus tissues of the wild species and hybrids showed a tendency to decrease with increasing salinity.  相似文献   

19.
 Segregation of the Lycopersicon peruvianum genome was followed through three generations of backcrossing to the cultivated tomato L. esculentum cv ‘E6203’ using molecular markers. Thirteen BC1 plants were genotyped with 113 markers, 67 BC2 plants with 84 markers, and finally 241 BC3 plants were genotyped with 177 markers covering the entire genome and a BC3 map constructed. Several segments of the genome, including parts of chromosomes 3, 4, 6, and 10, quickly became fixed for esculentum alleles, possibly due to sterility problems encountered in the BC1. Observed overall heterozygosity and chromosome segment lengths at each generation were very near the expected theoretical values. Markers located near the top telomeric region of chromosome 9 showed segregation highly skewed towards the wild allele through all generations, suggesting the presence of a gamete promoter gene. One markers, TG9, mapped to a new position on chromosome 9, implying an intrachromosomal translocation event. Despite the great genetic distance between the two parents, overall recombination was only 25% less than that observed in a previous tomato cross, indicating that L. peruvianum genes may be more readily introgressed into cultivated germplasm than originally believed. Received: 9 April 1997 / Accepted : 20 May 1997  相似文献   

20.
Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1) and ZnO-NPs (0, 15 and 30 mg L−1). Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号