首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
GD1b and GD1b-lactone (GD1b-L) gangliosides bind to the same extent to a P2 crude membrane preparation from rat brain. After 30 min of incubation with 10?4, 105, and 10?6 Absolutions of ganglioside, 1,800, 450, and 100 pmol of ganglioside/mg of protein, respectively, were found to be stably associated to the P2 fraction. This association modifies the phosphorylation process of the P2 membrane proteins in a dose-dependent manner, the maximal effect being reached at a ganglioside association of 1.85 nmol/mg of protein and in large part at 450 pmol/mg of protein. The effects of GD1b and GD1b-L on the phosphorylation of five proteins, showing apparent molecular masses of 17, 20, 36, 41, and 44 kDa, were different after 0.5 min of phosphorylation reaction as well as after 15 min. After 0.5 min of reaction, in the presence of stably associated GD1b, the phosphorylation of the 36-, 41-, and 44-kDa proteins was increased with reference to the control, whereas the phosphorylation of the 17- and 20-kDa proteins was decreased. GD1b-L exerted qualitatively similar effects only on the 44-, 41-, and 36-kDa proteins and to a strongly reduced degree. After 15 min of reaction, only the phosphorylation of the 36-kDa protein was stimulated by GD1b; GD1b-L exerted a similar effect, but to a low degree.  相似文献   

2.
The aggregative properties of GM1 ganglioside containing an acetyl group as acyl moiety [GM1(acetyl)] in aqueous solution have been studied by static and dynamic light scattering measurements and surface tension experiments. GM1 (acetyl) spontaneously aggregates as small micelles showing a hydrodynamic radius and molecular weight of 34 A and 102 kDa, respectively, down to a concentration of 2.0 x 10(-5) M.  相似文献   

3.
4.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Le(x) biosyntheses [Basu, S (1991) Glycobiology, 1, 469-475; and ibid, 427-435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of (14)C-L-Serine. At lower concentrations (0-20 microM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both (14)C-sphingolipid and (14)C-ceramide was higher. However, at higher concentrations (20-100 microM), wherein apoptosis occurred in high frequency, the (14)C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death.  相似文献   

5.
The presence of ganglioside GD1b, in lactone form GD1b-L, was ascertained in rat brain. The possible formation of GD1b-L from GD1b in brain was explored by the intracisternal injection of GD1b, 3H-labelled at the level of the terminal galactose. This was followed by recognition of the radioactive gangliosides formed at different times (1, 3, and 7 days) after injection. Whereas at 0 time after injection the only radioactive ganglioside was GD1b, after 1, 3, and 7 days other radioactive gangliosides were also found, thus indicating GD1b penetration into the brain tissue, followed by metabolic processing. Besides GD1b, the following radioactive gangliosides were recognized: GM1 and GM2, derived from GD1b degradation; GT1b, formed by the direct sialylation of GD1b; and GD1b-L, produced by metabolic lactonization. The radioactivity carried by GD1b-L was maximal 3 days after injection; its time course was different from that of the other gangliosides, suggesting that the process of lactonization is separate from that of both degradation and glycosylation. Under the same experimental conditions, some radioactive gangliosides also appeared in the liver, although in much smaller amounts than in brain. Radioactive GD1b-L could not be detected in liver, thus indicating that metabolic lactonization is a tissue- or organ-specific process.  相似文献   

6.
We have developed a solid matrix immunoassay to determine the binding of interleukin-2 (IL-2) to specific gangliosides. The assay establishes that recombinant human IL-2 binds to ganglioside GD(1b) but not to any other gangliosides (GM(1), GM(2), GM(3), GD(1a), GD(2), GD(3), and GT(1b)). The binding varies with the ratio of GD1b and IL-2. This assay enables distinguishing the nature of the sugar moiety of the ganglioside recognized by IL-2 and establishes the dosimetry of the ganglioside-IL-2 interaction. Since rIL-2 is administered systematically into stage IV melanoma patients, we have examined 45 tumor biopsies for GD(1b) content. The incidence of GD(1b) in tumor biopsies is 51%. We postulate that GD(1b) associated on the tumor or in the circulation of cancer patients may bind to rIL-2 and prevent the availability of rIL-2 to augment antitumor-immune response.  相似文献   

7.
Human anomalous killer (AK) cells lyse freshly isolated human melanoma cells which are insensitive to human natural killer cell-mediated lysis. Monoclonal antibody Leo Mel 3, an IgM (k), produced by a hybridoma obtained from a mouse immunized with human melanoma cells, binds to melanoma cells and inhibits their conjugate formation with AK cells as well as their AK cell-mediated lysis. Other IgM antibodies from the same fusion that bind melanoma cells do not inhibit (Werkmeister, J. A., Triglia, T., Andrews, P., and Burns, G. F. (1985) J. Immunol. 135, 689-695). Leo Mel 3 binds several different gangliosides from melanoma cells, as determined by immunostaining thin layer chromatograms. Binding is abolished by treatment of the gangliosides with neuraminidase. In solid-phase radioimmunoassay, Leo Mel 3 binds strongly to ganglioside GD2 and less strongly to gangliosides GT3, GD3, and GQ1b. It does not bind to other gangliosides including GM1, GM2, GM3, GD1a, GD1b, and GT1b. Thus, the epitope recognized by antibody Leo Mel 3 is found in the sugar sequence of ganglioside GD2, GalNAc beta 1-4[NeuAc alpha 2-8NeuAc alpha 2-3]Gal beta 1-4Glc beta 1 .... This sequence may contain a target in melanoma cells recognized by AK cells.  相似文献   

8.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Lex biosyntheses [Basu, S (1991) Glycobiology, 1, 469–475; and ibid, 427–435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of 14C-L-Serine. At lower concentrations (0–20 μM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both 14C-sphingolipid and 14C-ceramide was higher. However, at higher concentrations (20–100 μM), wherein apoptosis occurred in high frequency, the 14C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A comparative study on the conformational features of the oligosaccharide moiety of GD1b and GD1b lactone gangliosides, in dimethylsulphoxide, has been carried out by nuclear Overhauser effect investigation; the experimental interresidue contacts have been used for restrained molecular mechanics and dynamics calculations. For GD1b, the tetrasaccharide beta-GalNAc-(1----4)-[alpha-Neu5Ac-(2 ----8)-alpha-Neu5Ac-(2----3)]-beta-Gal has a circular arrangement leaving a highly hydrophobic region with seven hydrogens pointing towards the center. At one side of this region the three electron rich groups GalNAc--NH, external Neu5Ac--OH4 and internal Neu5Ac--COO- are grouped together; at the other side five polar groups (four hydroxy groups and the external Neu5Ac carboxylate) define a large annular hydrophilic region. The external Neu5Ac is close to the external Gal residue, and the external Neu5Ac--COO- is within van der Waals contact with the inner Neu5Ac-OH9 group. The beta-Gal-(1----3)-beta-GalNAc glycosidic linkage shows a high degree of freedom. For GD1b-L, the trisaccharide beta-GalNAc-(1----4)-[alpha-Neu5Ac-(2----3)]-beta-Gal is disposed to forming rigid partially circular arrangement showing strong interresidue contacts between the inner Neu5Ac-H8 and both GalNAc-H1 and GalNAc-H5. The conformation of the lactone ring is the boat 9(A),2(B)B. The lactonization of the disialosyl residue induces a strong variation of the preexisting torsional glycosidic angles phi and psi, leaving the external Neu5Ac far from the external Gal. In both GD1b and GD1b lactone gangliosides, the conformation of the sialic acid side chain is the same as that of the free sialic acid in which the H7 is trans to H8 and gauche to H6, thus indicating that the presence of glycosidic and/or ester linkages does not affect the conformational properties of sialic acid. Both GD1b and GD1b lactone containing sialic acid carboxylate anion(s) or undissociated carboxyl group(s) show the same three dimensional structure, indicating that the presence of charges does not affect the intrinsic conformational features of gangliosides.  相似文献   

10.
Gangliosides-sialylated glycosphingolipids-are the major glycoconjugates of nerve cells. The same four structures-GM1, GD1a, GD1b and GT1b-comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2-3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.  相似文献   

11.
A CMP-NeuAc:Gal beta 1----3GalNAc-R alpha 2----3-sialyltransferase has been purified over 20,000-fold from a Triton X-100 extract of human placenta by affinity chromatography on concanavalin A-Sepharose and CDP-hexanolamine-Sepharose in a yield of 10%. Sodium dodecyl sulfate-gel electrophoresis under reducing conditions revealed that the enzyme consists of a major polypeptide species with a molecular weight of 41,000 and some minor forms with molecular weights of 40,000, 43,000, and 65,000, respectively, which can be resolved partially by gel filtration on Sephadex G-100. Isoelectric focusing revealed that the enzyme occurs in a major and a minor charged form with pI values of 5.0-5.5 and 6.0, respectively. Acceptor specificity studies indicated that the enzyme catalyzes the incorporation of sialic acid from CMP-NeuAc into glycoproteins, glycolipids, and oligosaccharides which possess a terminal Gal beta----3GalNAc unit. Analysis of the structure of the product chain by high-pressure liquid chromatography and thin layer chromatography as well as methylation analysis revealed that a NeuAc alpha 2----3Gal beta 1----3GalNAc sequence is elaborated. The best glycoprotein acceptors are antifreeze glycoprotein and porcine submaxillary asialo/afucomucin. The disaccharide Gal beta 1----3GalNAc-Thr shows values for Km and V which are close to those of the latter glycoprotein. Lactose as well as oligosaccharides in which galactose is linked beta 1----3 or beta 1----4 to N-acetylglucosamine are less efficient acceptors. Of the glycolipids tested only gangliosides GM1 and GD1b served as an acceptor. The enzyme does not show an absolute aglycon specificity, and attaches sialic acid regardless the anomeric configuration of the N-acetylgalactosaminyl residue in the accepting Gal beta 1----3GalNAc unit. By use of specific acceptor substrates it could be demonstrated that the purified enzyme is free from other known sialyltransferase activities. Studies with rabbit antibodies raised against a partially purified sialyltransferase preparation indicated that the enzyme is immunologically unrelated to a Gal beta 1----4GlcNAc-R alpha 2----3-sialyltransferase, which previously had been identified in human placenta (Van den Eijnden, D.H., and Schiphorst, W. E. C. M. (1981) J. Biol. Chem. 256, 3159-3162). Initial-rate kinetic studies suggest that the sialyltransferase operates through a mechanism involving a ternary complex of enzyme, sugar donor, and acceptor. This is the first report on the extensive purification and characterization of a sialyltransferase from a human tissue.  相似文献   

12.
We have synthesized several ganglio-oligosaccharide structures using glycosyltransferases from Campylobacter jejuni. The enzymes, alpha-(2-->3/8)-sialyltransferase (Cst-II), beta-(1-->4)-N-acetylgalactosaminyltransferase (CgtA), and beta-(1-->3)-galactosyltransferase (CgtB), were produced in large-scale fermentation from Escherichia coli and further characterized based on their acceptor specificities. 2-Azidoethyl-glycosides corresponding to the oligosaccharides of GD3 (alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-), GT3 (alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-), GM2 (beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-), GD2 (beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-), GT2 (beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-), and GM1 (beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-) were synthesized in high yields (gram-scale). In addition, a mammalian alpha-(2-->3)-sialyltransferase (ST3Gal I) was used to sialylate GM1 and generate GD1a (alpha-D-Neup5Ac-(2-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-) oligosaccharide. We also cloned and expressed a rat UDP-N-acetylglucosamine-4'epimerase (GalNAcE) in E. coli AD202 cells for cost saving in situ conversion of less expensive UDP-GlcNAc to UDP-GalNAc.  相似文献   

13.
In addition to ganglioside GM1b, an unusual and extremely minor ganglioside, GD1 alpha, was efficiently isolated from bovine brain by combination of Q-Sepharose and Iatrobeads column chromatographies. In the course of purification steps, the presence of the sialidase-labile ganglioside was proved by a highly sensitive TLC/enzyme-immunostaining method. The structure was characterized by gas-liquid chromatography, permethylation study, sialidase degradation, immunostaining with specific antibodies, fast atom bombardment-mass spectrometry, and proton magnetic resonance spectrometry. The content of the ganglioside was very small (0.016%) in the total gangliosides. This finding suggests that a synthetic pathway of asialo GM1----GM1b----GD1 alpha may exist in mammalian brains. A monoclonal antibody NA-6 that was obtained by immunizing mice with purified GM1b reacted specifically with GM1b but showed no cross-reactivity with other structurally related gangliosides such as GM1a, GD1a, and so on. Using the method of TLC/immunostaining with NA-6, GM1b was found to be strongly expressed during embryonic days 14-17 in chick brains. Thus, it is assumed that extremely minor gangliosides like GM1b and GD1 alpha found in adult brains are characterized as embryonic molecules.  相似文献   

14.
In this study, age-related changes of GM1, GD1a, GT1b fractions of gangliosides were investigated in whole brain of male Wistar albino rats. Insignificant increases were detected in GM1 values from the third to the 24th month, whereas GD1a and GT1b concentrations of ganglioside in 24-month-old rats decreased significantly as compared to 6-month-old rats. Although there were no significant differences in the GD1a/GT1b ratio of any groups, GM1/GD1a and GM1/GT1b ratios were significantly increased as compared to 6-month-old rats. The increase in the ratios of gangliosides are not due to an increase of GM1 fractions; they result from a decrease of GD1a and GT1b fractions of gangliosides. In conclusion, the concentration of ganglioside decreased with ageing.  相似文献   

15.
NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs.  相似文献   

16.
The effect of end-product gangliosides (GD1a, GT1b, GQ1b) on the activities of two key enzymes in ganglioside biosynthesis, namely GM2-synthase and GD3-synthase in rat liver Golgi apparatus, has been investigated in detergent-free as well as in detergent-containing assays. In detergent-free intact Golgi vesicles, phosphatidylglycerol was used as a stimulant. This phospholipid was earlier shown to stimulate the activity of GM2-synthase without disrupting the vesicular intactness; it has, however, no effect on GD3-synthase (Yusuf, H.K.M., Pohlentz, G., Schwarzmann, G. & Sandhoff, K. (1983) Eur. J. Biochem. 134, 47-54). In the presence of this stimulant, all higher gangliosides inhibited the activity of GM2-synthase, the inhibition being more profound with increasing negative charge of the inhibiting gangliosides. These inhibitions are unspecific, but they do not exclude an end-product regulation of ganglioside biosynthesis. In detergent-solubilized Golgi membranes, on the other hand, the inhibition pattern was completely different. Here, ganglioside GD1a was the strongest inhibitor of GM2-synthase, followed by GM1 and GM2, but GT1b also inhibited this enzyme appreciably, in fact more strongly than GM1 or GM2. On the other hand, GQ1b had no effect at all. Conversely, GD3-synthase activity was most strongly inhibited by GQ1b, followed by GT1b, but GD1a also inhibited this enzyme almost as strongly as GT1b. These latter findings indicate that feed-back control of the a- and the b-series pathways of ganglioside biosynthesis is probably not specific, but the pathways appear to be inhibited more preferably by their respective end-products than by any other gangliosides of the same of the other series.  相似文献   

17.
Molecular dynamics simulation of ganglioside GD1a attached to the upper layer of a fully hydrated lipid bilayer of dimyristoyl phosphatidyl choline (DMPC) at room temperature under periodic boundary conditions was performed. The time average conformation of GD1a reveals that the terminal sialic acid is more exposed into the solvent than the internal branched one. Many interresidual contacts between N-acetyl galactosamine-internal branched sialic acid; external Gal-external sialic acid; N-acetyl galactosamine-internal gal are also observed. The conformation of the GD1-hexasaccharide is stabilized by a number of intra molecular hydrogen bonds that were previously observed experimentally. The simulation results indicate that the presence of a single GD1a molecule has local effects on the bilayer. A local disorder in the arrangement of the acyl chains as well as the head groups is evident in the upper layer due to the presence of GD1a.  相似文献   

18.
B Maggio  T Ariga  R K Yu 《Biochemistry》1990,29(37):8729-8734
The individual properties and intermolecular organization of ganglioside GD3 and of two of its lactone forms (GD3Lactone I and GD3Lactone II) were studied in lipid monolayers. The formation of the first lactone ring in GD3Lactone I eliminates one negative charge and leads to a decrease of the molecular area at all surface pressures. The intermolecular dispersion energy and collapse pressure are higher in GD3Lactone I compared to those in the parent GD3. The surface potential per unit of molecular surface density and the resultant molecular dipole moment are increased in GD3Lactone I with respect to those in GD3 at comparable values of molecular area. In GD3Lactone I the molecular parameters suggest an oligosaccharide chain oriented similarly to that of GD3. On the average, this is perpendicular to the surface, and the resultant polar head-group dipole moment points away from the interface. In GD3Lactone II the negative charges are eliminated, resulting in considerably larger molecular areas than for GD3 and GD3Lactone I at all pressures. The intermolecular dispersion energy of GD3Lactone II is also greatly diminished and the collapse pressure is further increased compared to those of GD3Lactone I. However, the surface potential per unit molecular surface density and the resultant molecular dipole moment of GD3Lactone II are higher than in GD3 Lactone I at similar values of molecular areas. This is probably due to a positive polar head-group dipole moment contribution induced by the additional lactone ring in GD3Lactone II. These changes result from a distorted conformation of the oligosaccharide chain owing to the presence of fused carbohydrate rings which require a greater intermolecular spacing compared to GD3 and GD3Lactone I.  相似文献   

19.
We formed vesicles from mixtures of egg phosphatidylcholine (PC) and the gangliosides GM1, GD1a, or GT1 to model the electrokinetic properties of biological membranes. The electrophoretic mobilities of the vesicles are similar in NaCl, CsCl, and TMACl solutions, suggesting that monovalent cations do not bind significantly to these gangliosides. If we assume the sialic acid groups on the gangliosides are located some distance from the surface of the vesicle and the sugar moieties exert hydrodynamic drag, we can describe the mobility data in 1, 10, and 100 mM monovalent salt solutions with a combination of the Navier-Stokes and nonlinear Poisson-Boltzmann equations. The values we assume for the thickness of the ganglioside head group and the location of the charge affect the theoretical predictions markedly, but the Stokes radius of each sugar and the location of the hydrodynamic shear plane do not. We obtain a reasonable fit to the mobility data by assuming that all ganglioside head groups project 2.5 nm from the bilayer and all fixed charges are in a plane 1 nm from the bilayer surface. We tested the latter assumption by estimating the surface potentials of PC/ganglioside bilayers using four techniques: we made 31P nuclear magnetic resonance, fluorescence, electron spin resonance, and conductance measurements. The results are qualitatively consistent with our assumption.  相似文献   

20.
Abstract: Three autopsy brains from patients who succumbed to malignant gliomas have been analyzed in various regions with regard to their ganglioside content. The study focused on the gangliosides GD3 and 3'-isoLM1, which in a previous study of biopsies were found to be associated with these tumors. In particular, 3'-isoLM1, was suggested to be a marker for malignant gliomas. The highest concentrations (200–1,000 nmol of sialic acid/g wet weight) of GD3 was found in specimens of macroscopically pure tumor, where the proportion of GD3 was, at the most, 78% (range, 11–78%) of the total ganglioside sialic acid compared with <10% in normal brain tissue. The proportion of the total ganglioside sialic acid made up by GD3 was also elevated in the periphery of the tumor and in the same region in the opposite hemisphere, where no tumor cells were detected. In four of eight brain metastases of various carcinomas, GD3 was >10% of the total ganglioside sialic acid (range, 3–37%). The ganglioside 3'-isoLM1, as determined by TLC-enzyme-linked immunosorbent assay using a specific monoclonal antibody (SL-50), was not present at detectable levels in any of the macroscopically homogenous tumor areas. It was, however, found in the periphery of the tumor, in the corpus callosum, and at highest concentrations in the region of the opposite hemisphere corresponding to the tumor. The concentration varied between 0.1 and 6.0 nmol/g wet weight of tissue. The 3'-isoLM1 ganglioside was not detected in normal gray or white matter or in the normal corpus callosum, but in one of three breast cancer metastasis, one of two low differentiated cancer metastases, and one stomach cancer. The concentration was 1–4 nmol/g wet weight. These results indicate a unique distribution of the gangliosides GD3 and 3'-isoLM1 and suggest that they play distinct roles in interaction between tumor cells and brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号