首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J E Schinkel  G G Hammes 《Biochemistry》1986,25(14):4066-4071
Time-resolved fluorescence depolarization measurements were made on chloroplast coupling factor 1 (CF1) labeled with pyrenylmaleimide. Rotational correlation times were determined for native CF1, for CF1 lacking epsilon and/or delta polypeptides, and for activated enzyme. The rotational correlation time measured is characteristic of the rotation of the entire enzyme. Removal of the delta polypeptide resulted in a 25% smaller rotational correlation time, although the delta polypeptide contributes less than 5% of the mass of CF1. Removal of the epsilon polypeptide was without effect. Simultaneous removal of delta and epsilon polypeptides produced a 30% smaller rotational correlation time. Activation of CF1 ATPase by incubation with dithiothreitol reduced the rotational correlation time by 15% relative to that of the latent enzyme. The rotational correlation time of CF1 with delta and epsilon polypeptides removed is essentially that expected for a spherical molecule, whereas the other forms of the enzyme can be approximated as ellipsoids of revolution; the axial ratio of the latent enzyme is estimated from the rotational correlation time and the intrinsic viscosity. These data indicate that the delta polypeptide significantly alters the shape of the enzyme and that a conformational change accompanies dithiothreitol activation of the enzyme.  相似文献   

2.
The coupling factor, F1-ATPase of Escherichia coli (ECF1) contains five different subunits, alpha, beta, gamma, delta, and epsilon. Properties of delta-deficient ECF1 have previously been described. F1-ATPase containing only the alpha, beta, and gamma subunits was prepared from E. coli by passage of delta-deficient ECF1 through an affinity column containing immobilized antibodies to the epsilon subunit. The delta, epsilon-deficient enzyme has normal ATPase activity but cannot bind to ECF1-depleted membrane vesicles. Both the delta and epsilon subunits are required for the binding of delta, epsilon-deficient ECF1 to membranes and the restoration of oxidative phosphorylation. Either delta or epsilon will bind to the deficient enzyme to form a four-subunit complex. Neither four-subunit enzyme binds to depleted membranes. The epsilon subunit, does, however, slightly improve the binding affinity between delta and delta-deficient enzyme suggesting a possible interaction between the two subunits. Neither subunit binds to trypsin-treated ECF1, which contains only the alpha and beta subunits. A role for gamma in the binding of epsilon to F1 is suggested. epsilon does not bind to ECF1-depleted membranes. Therefore, the in vitro reconstitution of depleted membranes requires an initial complex formation between epsilon and the rest of ECF1 prior to membrane attachment. Reconstitution experiments indicate that only one epsilon is required per functional ECF1 molecule.  相似文献   

3.
Conformational changes of the cAMP-dependent protein kinase (PKA) catalytic (C) subunit are critical for the catalysis of gamma-phosphate transfer from adenosine 5'-triphosphate (ATP) to target proteins. Time-resolved fluorescence anisotropy (TRFA) was used to investigate the respective roles of Mg(2+), ATP, MgATP, and the inhibitor peptide (IP20) in the conformational changes of a 5,6-carboxyfluorescein succinimidyl ester (CF) labeled C subunit ((CF)C). TRFA decays were fit to a biexponential equation incorporating the fast and slow rotational correlation times phi(F) and phi(S). The (CF)C apoenzyme exhibited the rotational correlation times phi(F)=1.8+/-0.3 ns and phi(S)=20.1+/-0.6 ns which were reduced to phi(F)=1.1+/-0.2 ns and phi(S)=13.3+/-0.9 ns in the presence of MgATP. The reduction in rotational correlation times indicated that the (CF)C subunit adopted a more compact shape upon formation of a (CF)C.MgATP binary complex. Neither Mg(2+) (1-3 mM) nor ATP (0.4 mM) alone induced changes in the (CF)C subunit conformation equivalent to those induced by MgATP. The effect of MgATP was removed in the presence of ethylenediaminetetraacetic acid (EDTA). The addition of IP20 and MgATP to form the (CF)C x MgATP x IP20 ternary complex produced rotational correlation times similar to those of the (CF)C x MgATP binary complex. However, IP20 alone did not elicit an equivalent reduction in rotational correlation times. The results indicate that binding of MgATP to the C subunit may induce conformation changes in the C subunit necessary for the proper stereochemical alignment of substrates in the subsequent phosphorylation.  相似文献   

4.
Activation of the latent ATPase of soluble CF1 by methanol is shown to involve several distinct effects. CaATPase activity of whole, but not epsilon-deficient or heat-activated CF1, is stimulated by methanol. This suggests that one effect of methanol is to overcome inhibition by the epsilon subunit. In contrast, the MgATPase activities of both whole and epsilon-deficient CF1 are further stimulated by methanol. This second activating effect can be traced in part to a greatly increased affinity of CF1, due to methanol, for those anions which reverse the inhibitory effect of Mg2+. Since the inhibition by free Ca2+ is much less severe than that caused by Mg2+, anions have relatively little effect on CaATPase. Thus methanol has little or no effect when Ca2+ is the divalent cation, but stimulates the reaction when Mg2+ is used. Methanol also stimulates the MgATPase activity of epsilon-deficient CF1 in the complete absence of activating anions. This additional effect is shown to arise from an increase in the Vmax rather than from changes in either the Km for MgATP or the Ki for free Mg2+. Since this change in Vmax occurs with the MgATPase but not the CaATPase, it can be inferred that different steps are rate-limiting in the two activities.  相似文献   

5.
An improved procedure for the preparation of chloroplast coupling factor 1 (CF1) lacking the delta subunit is described. In addition, CF1 deficient in the epsilon subunit was isolated by a new method and CF1 lacking both of the smaller subunits was prepared. The ability of the subunit-deficient forms and of CF1, either heated or incubated with dithiothreitol to activate its ATPase activity, to bind to thylakoids from which CF1 had been removed was studied. All CF1 preparations bound in a cation-dependent manner to similar extents. CF1 lacking the delta subunit required higher cation concentrations for maximal binding. All preparations competed similarly with control CF1 for binding sites on the depleted membranes. The alpha subunit of all forms of CF1 in solution was rapidly cleaved by trypsin. After reconstitution, however, the alpha subunit of CF1, as well as of the subunit-deficient and the activated forms, was resistant to attack by trypsin. Moreover, treatment of the membranes with either trypsin or N,N'-dicyclohexylcarbodiimide inhibited the binding of all CF1 forms. These results suggest that the binding of the subunit-deficient and activated forms of CF1 is specific. CF1 lacking the epsilon subunit restored neither proton uptake nor ATP synthesis to the depleted membranes. In contrast to our previous results, CF1 lacking the delta subunit was partially effective. Previously, we used a suboptimal Mg2+ concentration for binding the delta-deficient enzyme which we show here was partially deficient in the epsilon subunit. These results show that the delta and epsilon subunits are not required for binding CF1 to the membranes and that the delta subunit is not an absolute requirement for ATP synthesis.  相似文献   

6.
The dynamical fluorescence properties of the sole tryptophan residue (Trp-140) in Staphylococcus aureus nuclease (EC 3.1.31.1) have been investigated in aqueous solution and reversed micelles composed of either sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane or cetyltrimethylammonium chloride (CTAC) in isooctane/hexanol (12:1 by volume). The fluorescence decay of nuclease in the different environments can be described by a trimodal distribution of fluorescence lifetimes at approx. 0.5, 1.5 and 5.0 ns. The relative amplitudes depend on the environment. For pH 9.0 solutions the contribution of the two shortest lifetime components in the distribution is largest for AOT and smallest for CTAC reversed micelles. There is reasonable agreement between the average fluorescence lifetime and the fluorescence quantum efficiency confirming a significant fluorescence quenching in AOT reversed micelles. Fluorescence anisotropy decay revealed that the tryptophan environment in aqueous nuclease solutions is rigid on a nanosecond timescale. When nuclease was entrapped into reversed micelles the tryptophan gained some internal flexibility as judged from the distinct presence of a shorter correlation time. The longer correlation time reflected the rotational properties of the protein-micellar system. Modulation of the overall charge of nuclease (isoelectric point pH 9.6) by using buffer of pH 9.0 and pH 10.4, respectively, and of the size of empty micelles by selecting two values of the water to surfactant molar ratio, had only a minor effect on the rotational properties of nuclease in the positively charged reversed micelles. Encapsulation of nuclease in anionic reversed micelles resulted in the development of protein bound to aggregated structures which are immobilised on a nanosecond timescale. According to far UV vircular dichroism results the secondary structure of nuclease only followed the already published pH-dependent changes. Encapsulation had no major effect on the overall secondary structure.  相似文献   

7.
A fluorescent dye 1-anilino-8-naphthalene sulfonate was complexed with human apohemoglobin and sperm whale apomyoglobin. Nanosecond fluorescence-polarization kinetics were measured for each of these complexes in KC1 solutions to obtain their fluorescence lifetimes and rotational correlation times. The rotational correlation time of apohemoglobin-dye complex was found to be 21 ns, which was about twice that of apomyoglobin-dye complex, 11 ns. These values were constant over an ionic strength range from 0 to 1.7. Circular dichroism spectra (215-300 nm) and fluorescence lifetimes of the complexes were also found to be independent of the ionic strength, indicating that no gross conformational change occurs with the change in the salt concentration, These results suggest that apohemoglobin remains dimeric over the ionic-strength range examined.  相似文献   

8.
The fluorescence dye 1-anilino-naphthalene-8-sulphonic acid (ANS) was used as a probe of non-polar binding sites in the enzyme plasma amine oxidase. Steady fluorescence measurements indicate that ANS binds to a single binding site of the dimeric enzyme with a dissociation constant of 5 microns. This binding site is different from the catalytic binding site. Nanosecond emission anisotropy measurements were performed on the ANS-enzyme in an effort to detect independent rotation of the subunits in the native enzyme. The observed rotational correlation time (phi = 105 ns) corresponds to the rotation of a rigid dimeric macromolecule. A rotational correlation time of 120 ns was obtained with the enzyme labelled with pyrenebutyric acid. It is concluded that the dimeric enzyme does not exhibit any modes of flexibility due to independent rotation of the subunits in the nanosecond range.  相似文献   

9.
The ATP synthases in photophosphorylation and respiration are of the F-type with a membrane-bound proton channel, F0, and an extrinsic catalytic portion, F1. The properties of one particular subunit, delta (in chloroplasts and Escherichia coli) and OSCP (in mitochondria), are reviewed and the role of this subunit at the interface between F0 and F1 is discussed. Delta and OSCP from the three sources have in common the molecular mass (approximately 20 kDa), an elongated shape (axial ratio in solution about 3:1), one high-affinity binding site to F1 (Kd approximately 100 nM) plus probably one or two further low-affinity sites. When isolated delta is added to CF1-depleted thylakoid membranes, it can block proton flow through exposed CF0 channels, as do CF1 or CF1(-delta)+ delta. This identifies delta as part of the proton conductor or, alternatively, conformational energy transducer between F0 (proton flow) and F1 (ATP). Hybrid constructs as CF1(-delta)+ E. coli delta and EF1(-delta)+ chloroplast delta diminish proton flow through CF0.CF1(-delta) + E. coli delta does the same on EF0. Impairment of proton leaks either through CF0 or through EF0 causes "structural reconstitution' of ATP synthesis by remaining intact F0F1. Functional reconstitution (ATP synthesis by fully reconstructed F0F1), however, is absolutely dependent on the presence of subunit delta and is therefore observed only with CF1 or CF1(-delta) + chloroplast delta on CF0 and EF1 or EF1(-delta) + E. coli delta on EF0. The effect of hybrid constructs on F0 channels is surprising in view of the limited sequence homology between chloroplast and E. coli delta (36% conserved residues including conservative replacements). An analysis of the distribution of the conserved residues at present does not allow us to discriminate between the postulated conformational or proton-conductive roles of subunit delta.  相似文献   

10.
Chloroplast ATPase (CF1) was isolated from spinach, pea and maize thylakoids by EDTA extraction followed by anion-exchange chromatography. CF1 was purified and resolved by HPLC into integral CF1, and CF1 lacking the delta & epsilon subunits: CF1(-delta) and CF1(-epsilon). Washing Mono-Q-bound CF1 with alcohol-containing buffers followed by elution without alcohol produced the beta subunit and in separate peaks CF1(-delta) and CF1(-epsilon). Elution from Mono Q in the presence of tenside yielded a beta delta fragment, CF1(-delta) and CF1(-delta epsilon). Chloroplasts were CF1-depleted by EDTA extraction. Reconstitution of photophosphorylation in these 'EDTA vesicles' was obtained by addition of CF1 and its fragments. CF1, CF1(-delta) and CF1(-delta epsilon) were active with cross-reactivity between spinach, pea and maize. delta-containing CF1 always reconstituted higher activities than delta-deficient CF1. The beta delta fragment and dicyclohexylcarbodiimide (DCCD)-inhibited CF1 also were reconstitutively active while beta and DCCD-inhibited CF1(-delta) were not. These results support the notion that subunit delta can function as a stopcock to the CF0 proton channel as proposed by Junge, W., Hong, Y. Q., Qian, L. P. and Viale, A. [(1984) Proc. Natl Acad. Sci. USA 81, 3078-3082].  相似文献   

11.
F0F1-ATP synthases catalyse ATP formation from ADP and Pi by using the free energy supplied by the transmembrane electrochemical potential of the proton. The delta subunit of F1 plays an important role at the interface between the channel portion F0 and the catalytic portion F1. In chloroplasts it can plug the protonic conductance of CF0 and in Escherichia coli it is required for binding of EF1 to EF0. We wanted to know whether or not delta of one species was effective between F0 and F1 of the other species and vice versa. To this end the respective coupling membrane (thylakoids, everted vesicles from E. coli) was (partially) depleted of F1 and purified F1, F1(-delta), and delta were added in various combinations to the F1-depleted membranes. The efficiency or reconstitution was measured in thylakoids via the rate of phenazinemethosulfate-mediated cyclic photophosphorylation and in E. coli everted vesicles via the degree of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching. Addition of CF1 to partially CF1-depleted thylakoid vesicles restored photophosphorylation to the highest extent. CF1(-delta)+chloroplast delta, EF1, EF1(-delta)+E. coli delta were also effective but to lesser extent. CF1(-delta)+E. coli delta and EF1(-delta)+chloroplast delta restored photophosphorylation to a small but still significant extent. With F1-depleted everted vesicles prepared by repeated EDTA treatment of E. coli membranes, addition of CF1, CF1 (-delta)+chloroplast delta and CF1(-delta)+E. coli delta gave approximately half the extent of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching as compared to EF1 or EF1(-delta)+E. coli delta by energization of the vesicles with NADH, while Ef1(-delta)+chloroplast delta was ineffective. All 'mixed' combinations were probably reconstitutively active only by plugging the protonic leak through the exposed F0 (structural reconstitution) rather than by catalytic activity. Nevertheless, the cross-reconstitution is stunning in view of the weak sequence similarity between chloroplast delta and E. coli delta. It favors a role of delta as a conformational transducer rather than as a proton conductor between F0 and F1.  相似文献   

12.
The fluorescence dye 1-anilinonaphthalene-8-sulfonate (ANS) was used as a probe of non-polar binding sites in 4-aminobutyrate aminotransferase. ANS binds to a single binding site of the dimeric protein with a Kd of 6 μM. Nanosecond emission anisotropy measurements were performed on the ANS-enzyme in an effort to detect independent rotation of the subunits in the native enzyme. The observed rotational correlation time (φ = 65 ns) corresponds to the rotation of a rather rigid dimeric structure. The microenvironment surrounding the natural probe pyridoxal-5-P covalently bound to the dimeric structure was explored using 31P-NMR at 72.86 MHz. In the native enzyme, the pyridoxal-5-P 31P-chemical shift is pH-independent, indicating that the phosphate group is well protected from the solvent. The correlation time determined from the 31P-spectrum of the aminotransferase exceeds the value calculated for the hydrated spherical model (φ = 40 ns). It is concluded that the phosphate of the pyridoxal-5-P molecule is rigidly bound to the active site of 4-aminobutyrate aminotransferase.  相似文献   

13.
[Ru(2,2'-bipyridine)(2)(4,4'-dicarboxy-2,2'-bipyridine)](2+) (RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. In the present study, we demonstrated the usefulness of this probe for monitoring the rotational diffusion of high-molecular-weight (MW) proteins. Using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source, we compared the intensity and anisotropy decays of RuBDc conjugated to immunoglobulin G (IgG) and immunoglobulin M (IgM), which show a six-fold difference in MW We obtained slightly longer lifetimes for IgM (=428 ns in buffer) than IgG (=422 ns in buffer) in the absence and presence of glycerol, suggesting somewhat more efficient shielding of RuBDc from water in IgM than in IgG. The anisotropy decay data showed longer rotational correlation times for IgM (1623 and 65.7 ns in buffer) as compared to IgG (264 and 42.5 ns in buffer). Importantly, the ratio of the long rotational correlation times of IgM to IgG in buffer was 6.2, which is very close to that of MW of IgM to IgG (6.0). The shorter correlation times are most likely to be associated with domain motions within the proteins. The anisotropy decays reflect both the molecular size and shape of the immunoglobulins, as well as the viscosity. These results show that RuBDc can have numerous applications in studies of high-MW protein hydrodynamics and in fluorescence polarization immunoassays (FPI) of high-MW analytes.  相似文献   

14.
The beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily crosslinked to the epsilon subunit, another reacts with N-N'-dicyclohexylcarbodiimide (DCCD), and a third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). This asymmetric behaviour is not due to the association of the delta and epsilon subunits of the ATPase molecule with specific beta subunits since it is maintained in a delta, epsilon-deficient form of the enzyme.  相似文献   

15.
Time-resolved fluorescence and CD spectroscopy were used to characterize the structure and dynamics of the peptide hormone motilin with a single tyrosine residue among its 22 amino acids. CD spectroscopy showed that secondary structure is independent of concentration in the range 1 x 10(-5)-2.6 x 10(-4) M, and of the presence of DOPC lipid vesicles, but is strongly induced by addition of hexafluoroisopropanol. The fluorescence studies with tyrosine as the intrinsic fluorophore, performed at the MAX synchrotron laboratory at Lund, showed that three fluorescence lifetimes (0.4 ns, 1.7 ns and 3.6 ns at 20 degrees C) and two rotational correlation times (0.4 ns and 5 ns at 20 degrees C) were needed to account for the data. The different decay times are interpreted as representing ground-state rotamers interconverting slowly on the ns time scale. The rotational correlation times are ascribed to local angular motion of the tyrosyl ring, and global motion of the whole peptide, respectively.  相似文献   

16.
The activation by proteases of the Ca2+-dependent ATPase of chloroplast coupling factor 1 (CF1) has been investigated. Using low concentrations of papain and trypsin, the increase in ATPase activity and the degradation of the five subunits of CF1 were compared. Sodium dodecyl sulfate-gel electrophoresis of protease-treated CF1 revealed that the delta subunit was very rapidly degraded and that the alpha and beta subunits were clipped. The gamma and epsilon subunits were more resistant to digestion. The modification of the alpha subunit of latent CF1 most closely correlated with the activation of Ca2+-ATPase activity. Trypsin treatment of dithiothreitol-activated CF1 resulted in a very rapid increase in Ca2+-ATPase activity and a corresponding rapid cleavage of the gamma subunit to a 25,000-dalton species. With more prolonged treatment, the 25,000-dalton species was cleaved to fragments of 14,000 and 11,000-daltons. Dithiothreitol treatment did not alter the rate of attack on the other subunits. The gamma subunit of heat-activated CF1 was also more susceptible to protease digestion. The increased protease sensitivity of the gamma subunit of soluble CF1 after treatment with dithiothreitol or heat mimics the increased protease sensitivity of the gamma subunit of bound CF1 when thylakoids are treated with trypsin during illumination (Moroney, J. V., and McCarty, R. E. (1982) J. Biol. Chem. 257, 5915-5920). These results suggest that the conformational changes that occur when purified CF1 is exposed to dithiothreitol are similar to those that CF1 bound to thylakoid membranes undergoes under illumination.  相似文献   

17.
Fluorescent probes were attached to the single sulfhydryl residue on the isolated epsilon polypeptide of chloroplast coupling factor 1 (CF1), and the modified polypeptide was reconstituted with the epsilon-deficient enzyme. A binding stoichiometry of one epsilon polypeptide per CF1 was obtained. This stoichiometry corresponded to a maximum inhibition of the Ca2+-dependent ATPase activity of the enzyme induced by epsilon removal. Resonance energy transfer between the modified epsilon polypeptide and fluorescent probes attached to various other sites on the enzyme allowed distance measurements between these sites and the epsilon polypeptide. The epsilon-sulfhydryl is nearly equidistant from both the disulfide (23 A) and the dark-accessible sulfhydryl (26 A) of the gamma subunit. Measurement of the distance between epsilon and the light-accessible gamma-sulfhydryl was not possible due to an apparent exclusion of modified epsilon from epsilon-deficient enzyme after modification of the light-accessible site. The distances measured between epsilon and the nucleotide binding sites on the enzyme were 62, 66, and 49 A for sites 1, 2, and 3, respectively. These measurements place the epsilon subunit in close physical proximity to the sulfhydryl-containing domains of the gamma subunit and approximately 40 A from the membrane surface. Enzyme activity measurements also indicated a close association between the epsilon and gamma subunits: epsilon removal caused a marked increase in accessibility of the gamma-disulfide bond to thiol reagents and exposed a trypsin-sensitive site on the gamma subunit. Either disulfide bond reduction or trypsin cleavage of gamma significantly enhanced the Ca2+-ATPase activity of the epsilon-deficient enzyme. Thus, the epsilon and gamma polypeptides of coupling factor 1 are closely linked, both physically and functionally.  相似文献   

18.
The chloroplast coupling factor 1 complex (CF1) contains an epsilon-subunit which inhibits the CF1 ATPase activity. Chloroform treatment of Chlamydomonas reinhardtii thylakoid membranes solubilizes only forms of the enzyme which apparently lack the delta-subunit. Four interrelated observations are described in this paper. (1) The dithiothreitol- (DTT) induced ATPase activation of CF1(-delta) and the DTT-induced formation of a physically resolvable CF1(-delta,epsilon) from the CF1(-delta) precursor are compared. The similar time-courses of these two phenomena suggest that the dissociation of the epsilon-subunit is an obligatory process in the DTT-induced ATPase activation of soluble CF1. (2) The reversible dissociation of the epsilon-subunit of the CF1 is demonstrated by the exchange of subunits between distinguishable oligomers. 35S-labelled chloroplast coupling factor 1 lacking the delta and epsilon subunits [CF1(-delta,epsilon)] was added to a solution of non-radioactive coupling factor 1 lacking only the delta subunit [CF1(-delta)]. After separation of the two enzyme forms, via high resolution anion-exchange chromatography, radioactivity was detected in the chromatographic fractions containing CF1(-delta). (3) epsilon-deficient CF1 can be resolved from DTT pretreated epsilon-containing CF1 for several days after the removal of DTT. On the other hand, brief incubation of the DTT pretreated epsilon-containing CF1 with low concentrations of o-iodosobenzoate results in chromatographs containing only the peak of epsilon-containing CF1. A simple explanation for this phenomenon is that reduction of CF1 with DTT increases the apparent dissociation constant for the epsilon-subunit to an estimated 3.5 x 10(-8) M (+/- 1.0 x 10(-8) M) from a value of less than or equal to 5 x 10(-11) M for the oxidized enzyme. (4) ATPase activity data show that oxidation of the epsilon-deficient enzyme does not completely inhibit its manifest activity, but oxidation of DTT pre-treated CF1 which contains the epsilon-subunit completely inhibits manifest activity. A simple model is proposed for the influence of the oxidation state of the soluble enzyme on the distribution of ATPase-inactive and ATPase-active subunit configurations.  相似文献   

19.
Site-directed mutations were made to the phosphate-binding loop threonine in the beta-subunit of the chloroplast F1-ATPase in Chlamydomonas (betaT168). Rates of photophosphorylation and ATPase-driven proton translocation measured in coupled thylakoids purified from betaT168D, betaT168C, and betaT168L mutants had <10% of the wild type rates, as did rates of Mg2+-ATPase activity of purified chloroplast F1-ATPase (CF1). The EPR spectra of VO2+-ATP bound to Site 3 of CF1 from wild type and mutants showed that EPR species C, formed exclusively upon activation, was altered in CF1 from each mutant in both signal intensity and in 51V hyperfine parameters that depend on the equatorial VO2+ ligands. These data provide the first direct evidence that Site 3 is a catalytic site. No significant differences between wild type and mutants were observed in EPR species B, the predominant form of the latent enzyme. Thus, the phosphate-binding loop threonine is an equatorial metal ligand in the activated conformation but not in the latent conformation of Site 3. The metal-nucleotide conformation that gives rise to species B is consistent with the Mg2+-ADP complex that becomes entrapped in a catalytic site in a manner that regulates enzymatic activity. The lack of catalytic function of CF1 with entrapped Mg2+-ADP may be explained in part by the absence of the phosphate-binding loop threonine as a metal ligand.  相似文献   

20.
H A Berman  J Yguerabide  P Taylor 《Biochemistry》1985,24(25):7140-7147
Steady-state and time-correlated fluorescence polarizations have been examined for selected complexes and covalent conjugates of the 11S and (17 + 13)S forms of Torpedo acetylcholinesterase. The 11S form exists as a tetramer of apparently identical subunits, whereas the (17 + 13)S forms contain two or three sets of tetramers disulfide-linked to an elongated collagen-like tail unit. Pyrenebutyl methylphosphonofluoridate and (dansylsulfonamido)pentyl methylphosphonofluoridate were conjugated at the active center serine whereas propidium was employed as a fluorescent ligand for the spatially removed peripheral anionic site. Steady-state polarization of the pyrenebutyl conjugates indicates rotational correlation times of approximately 400 ns for the 11S species and greater than 1100 ns for the (17 + 13)S species. Hence, the tail unit severely restricts rotational motion of the catalytic subunits. Time-correlated fluorescence polarization analysis of the 11S species indicates multiple rotational correlation times. Anisotropy decay of the propidium complex (tau = 6 ns) occurs in exponential manner with a rotational correlation time of approximately 150 ns, while covalent adducts at the active center exhibit rotational correlation times greater than or equal to 300 ns. Anisotropy decay of the (dansylsulfonamido)pentyl conjugate (tau = 16 ns) appears exponential with a correlation time of approximately 320 ns, whereas decay of the pyrenebutyl conjugate (tau = 100 ns) is described by two correlation times, phi S = 18 ns and phi L = 320 ns, of small (15%) and large (85%) amplitudes, respectively. Two limiting models have been considered to explain the results.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号