首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The genus Rheumatobates comprises thirty‐seven species and subspecies of New World water striders belonging to subfamily Rhagadotarsinae. Among species, males vary dramatically in the degree and nature of modifications of the antennae, three pairs of legs and abdominal and genital segments. Characters describing this modification have traditionally been used to differentiate and group species. The general assumption has been that modified species belong to one group and unmodified species to another. These two ‘species groups’ are subdivided into ‘subgroups’, but little effort has been made to resolve relationships among them. We conduct the first numerical cladistic analysis of Rheumatobates using a data set comprised of 102 characters, primarily describing modification of male external morphology. To address concerns about the inclusion of characters to be optimized on the phylogeny, characters describing modification of antennae and hind legs were included and then excluded in separate analyses. A preferred phylogeny was chosen from the four equally parsimonious cladograms found after successive reweighting of characters. There was good resolution at all levels of the phylogeny. Most of the major clades and terminal relationships were moderately to strongly supported, whereas the basal relationships were less well supported. The general assumption that unmodified and modified species form two monophyletic groups was not supported. However, traditionally recognized ‘subgroups’ within the modified species group were largely upheld. The analysis also suggested several major clades and relationships among these clades that were not previously recognized. The exclusion of characters describing modification of antennae and hind legs did not change the resolved major clades of the reconstructed phylogeny.  相似文献   

2.
The members of the genus Heterixalus constitute one of the endemic frog radiations in Madagascar. Here we present a complete species-level phylogeny based on DNA sequences (4876 base pairs) of three nuclear and four mitochondrial markers to clarify the phylogenetic relationships among and within all known species of this genus, as well as the phylogenetic position of the monospecific Seychellean Tachycnemis seychellensis. Although the performance to resolve supported clades of Heterixalus species differed among the investigated gene fragments when analyzed separately, we could identify five well-supported species groups within Heterixalus in the combined analysis of all gene fragments. Our data strongly support a Heterixalus-Tachycnemis clade, and indicate the probable monophyly of Heterixalus placed sister to Tachycnemis. However, the diversification of these lineages may have happened in a short interval of time, leading to an unstable placement of Tachycnemis in the single-gene fragment phylogenies. Referring to the hitherto existing classification of Heterixalus, which is predominantly based on chromatic and bioacoustic characters, we examined the relative performance of these data sets relative to our molecular phylogeny. A Bayesian tree reconstructed with a bioacoustic data set yielded a higher resemblance to the molecular phylogeny than a tree constructed using a chromatic data set, which supports the importance of bioacoustic characters for systematic analyses of these anurans.  相似文献   

3.
The Drosophila obscura species group has served as an important model system in many evolutionary and population genetic studies. Despite the amount of study this group has received, some phylogenetic relationships remain unclear. While individual analysis of different nuclear, mitochondrial, allozyme, restriction fragment, and morphological data partitions are able to discern relationships among closely related species, they are unable to resolve relationships among the five obscura species subgroups. A combined analysis of several nucleotide data sets is able to provide resolution and support for some nodes not seen or well supported in analyses of individual loci. A phylogeny of the obscura species group based on combined analysis of nucleotide sequences from six mitochondrial and five nuclear loci is presented here. The results of several different combined analyses indicate that the Old World obscura and subobscura subgroups form a monophyletic clade, although they are unable to resolve the relationships among the major lineages within the obscura species group.  相似文献   

4.
We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear + mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear + mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.  相似文献   

5.
The Drosophila melanogaster species group is a popular model for evolutionary studies due to its morphological and ecological diversity and its inclusion of the model species D. melanogaster. However, phylogenetic relationships among major lineages within this species group remain controversial. In this report, the phylogeny of 10 species representing each of the well-supported monophyletic clades in the melanogaster group was studied using the sequences of 14 loci that together comprise 9493 nucleotide positions. Combined Bayesian analysis using gene-specific substitution models produced a 100% credible set of two trees. In the strict consensus of these trees, the ananassae subgroup branches first in the melanogaster species group, followed by the montium subgroup. The remaining lineages form a monophyletic clade in which D. ficusphila and D. elegans branch first, followed by D. biarmipes, D. eugracilis, and the melanogaster subgroup. This strongly supported phylogeny resolves most basal relationships in the melanogaster species group, and provides a framework that can be extended in the future to encompass more species.  相似文献   

6.
Several species in the rodent genus Mus are used as model research organisms, but comparative studies of these mice have been hampered by the lack of a well-supported phylogeny. We used DNA sequences from six genes representing paternally, maternally, and biparentally inherited regions of the genome to infer phylogenetic relationships among 10 species of Mus commonly used in laboratory research. Our sample included seven species from the subgenus Mus; one species each from the subgenera Pyromys, Coelomys, and Nannomys; and representatives from three additional murine genera, which served as outgroups in the phylogenetic analyses. Although each of the six genes yielded a unique phylogeny, several clades were supported by four or more gene trees. Nodes that conflicted between trees were generally characterized by weak support for one or both of the alternative topologies, thus providing no compelling evidence that any individual gene, or part of the genome, was misleading with respect to the evolutionary history of these mice. Analysis of the combined data resulted in a fully resolved tree that strongly supports monophyly of the genus Mus, monophyly of the subgenus Mus, division of the subgenus Mus into Palearctic (M. musculus, M. macedonicus, M. spicilegus, and M. spretus) and Asian (M. cervicolor, M. cookii, and M. caroli) clades, monophyly of the house mice (M. m. musculus, "M. m. molossinus," M. m. castaneus, and M. m. domesticus), and a sister-group relationship between M. macedonicus and M. spicilegus. Other clades that were strongly supported by one or more gene partitions were not strongly supported by the combined data. This appears to reflect a localized homoplasy in one partition obscuring the phylogenetic signal from another, rather than differences in gene or genome histories.  相似文献   

7.
Many authors have claimed that short branches in the Tree of Life will be very difficult to resolve with strong support, even with the large multilocus data sets now made possible by genomic resources. Short branches may be especially problematic because the underlying gene trees are expected to have discordant phylogenetic histories when the time between branching events is very short. Although there are many examples of short branches that are difficult to resolve, surprisingly, no empirical studies have systematically examined the relationships between branch lengths, branch support, and congruence among genes. Here, we examine these fundamental relationships quantitatively using a data set of 20 nuclear loci for 50 species of snakes (representing most traditionally recognized families). A combined maximum likelihood analysis of the 20 loci gives strong support for 69% of the nodes, but many remain weakly supported, with bootstrap values for 20% ranging from 21% to 66%. For the combined-data tree, we find significant correlations between the length of a branch, levels of bootstrap support, and the proportion of genes that are congruent with that branch in the separate analyses of each gene. We also find that strongly supported conflicts between gene trees over the resolution of individual branches are common (roughly 35% of clades), especially for shorter branches. Overall, our results support the hypothesis that short branches may be very difficult to confidently resolve, even with large, multilocus data sets. Nevertheless, our study provides strong support for many clades, including several that were controversial or poorly resolved in previous studies of snake phylogeny.  相似文献   

8.
We examined phylogenetic relationships among halobatine water striders (Hemiptera, Gerridae) using molecular and morphological data. The molecular data set was 780 bp DNA sequence data from the 3' half of the mitochondria! gene encoding cytochrome oxidase subunit I from 19 species of sea skaters, Halobates , and one species from each of three related genera, Asclepios annandalei, Austrobates rivularis , and Eurymetra natalensis. The morphological data set was a slightly modified version of a previously published data set. Unweighted parsimony analyses of the molecular data set gave one tree with weak support for most branches. Maximum likelihood analysis of the same data set gave a tree with slightly different topology, but reveiled many of the clades found in parsimony analyses of the morphological data set. Parsimony analyses of the combined molecular + morphology data sets gave a better resolved and better supported tree than did analyses of any single data set. The phytogeny of Halobates presented here allows a more rigorous evaluation of several prior hypotheses about evolutionary processes in marine water striders. In particular, it supports the hypothesis of at least two separate transitions from coastal to oceanic environments.  相似文献   

9.
Phylogenetic analyses using genome-scale data sets must confront incongruence among gene trees, which in plants is exacerbated by frequent gene duplications and losses. Gene tree parsimony (GTP) is a phylogenetic optimization criterion in which a species tree that minimizes the number of gene duplications induced among a set of gene trees is selected. The run time performance of previous implementations has limited its use on large-scale data sets. We used new software that incorporates recent algorithmic advances to examine the performance of GTP on a plant data set consisting of 18,896 gene trees containing 510,922 protein sequences from 136 plant taxa (giving a combined alignment length of >2.9 million characters). The relationships inferred from the GTP analysis were largely consistent with previous large-scale studies of backbone plant phylogeny and resolved some controversial nodes. The placement of taxa that were present in few gene trees generally varied the most among GTP bootstrap replicates. Excluding these taxa either before or after the GTP analysis revealed high levels of phylogenetic support across plants. The analyses supported magnoliids sister to a eudicot + monocot clade and did not support the eurosid I and II clades. This study presents a nuclear genomic perspective on the broad-scale phylogenic relationships among plants, and it demonstrates that nuclear genes with a history of duplication and loss can be phylogenetically informative for resolving the plant tree of life.  相似文献   

10.
We examined the phylogeny of Mantophasmatodea from southern Africa (South Africa, Namibia) using approx. 1300 bp of mitochondrial DNA sequence data from the genes encoding COI and 16S. The taxon sample comprised multiple specimens from eight described species (Namaquaphasma ookiepense, Austrophasma rawsonvillense, A. caledonense, A. gansbaaiense, Lobatophasma redelinghuysense, Hemilobophasma montaguense, Karoophasma botterkloofense, K. biedouwense) and four undescribed species of Austrophasmatidae; three specimens of Sclerophasma paresisense (Mantophasmatidae); and two specimens of Praedatophasma maraisi and one of Tyrannophasma gladiator (not yet convincingly assigned to any family). For outgroup comparison a broad selection from hemimetabolous insect orders was included. Equally weighted parsimony analyses of the combined COI+16S data sets with gaps in 16S scored as a fifth character state supported Austrophasmatidae and all species and genera of Mantophasmatodea as being monophyletic. Most species were highly supported with 98-100% bootstrap/7-39 Bremer support (BS), but K. biedouwense had moderate support (87/4) and A. caledonense low support (70/1). Mantophasmatodea, Austrophasmatidae, and a clade Tyrannophasma gladiator+Praedatophasma maraisi were all strongly supported (99-100/12-25), while relationships among the two latter clades and Mantophasmatidae remain ambiguous. Concerning the relationships among genera of Austrophasmatidae, support values are moderately high for some nodes, but not significant for others. We additionally calculated the partitioned BS values of COI and 16S for all nodes in the strict consensus of the combined tree. COI and 16S are highly congruent at the species level as well as at the base of Mantophasmatodea, but congruence is poor for most intergeneric relationships. In forthcoming studies, deeper relationships in the order should be additionally explored by nuclear genes, such as 18S and 28S, for a reduced sample of specimens.  相似文献   

11.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

12.
Parmelioid lichens comprise about 1500 species and have a worldwide distribution. Numerous species are widely distributed and well known, including important bioindicators for atmospheric pollution. The phylogeny and classification of parmelioid lichens has been a matter of debate for several decades. Previous studies using molecular data have helped to establish hypotheses of the phylogeny of certain clades within this group. In this study, we infer the phylogeny of major clades of parmelioid lichens using DNA sequence data from two nuclear loci and one mitochondrial locus from 145 specimens (117 species) that represent the morphological and chemical diversity in these taxa. Parmelioid lichens are not monophyletic; however, a core group is strongly supported as monophyletic, excluding Arctoparmelia and Melanelia s. str., and including Parmeliopsis and Parmelaria. Within this group, seven well-supported clades are found, but the relationships among them remain unresolved. Stochastic mapping on a MC/MCMC tree sampling was employed to infer the evolution of two morphological and two chemical traits believed to be important for the evolutionary success of these lichens, and have also been used as major characters for classification. The results suggest that these characters have been gained and lost multiple times during the diversification of parmelioid lichens.  相似文献   

13.
The phylogeny of grouse (Aves: Tetraoninae) was reconstructed using four noncoding loci: two were W-linked, one was autosomal, and one was the mitochondrial control region (CR). The rapidly evolving CR provided resolution throughout the tree, whereas the slowly evolving nuclear loci failed to resolve deeper nodes. The tree based on all four loci combined was almost identical to the CR tree and did not improve resolution or bootstrap support. The stemminess and imbalance of the trees were good determinants of the quality of the phylogenetic signal. The skewness of the tree score distribution (g(1)) behaved contrary to prediction; loci that had a more symmetric tree score distribution produced trees that had greater stemminess and balance. The quality of the phylogenetic signal was related to the evolutionary rate. Four clades of grouse were discovered. Two of these clades corresponded to currently recognized genera Bonasa and Lagopus. Bonasa was the sister to other grouse and Lagopus was the sister to the other two non-Bonasa clades. The third clade included Falcipennis, Tetrao, and Lyrurus. The fourth clade included the genera Centrocercus, Dendragapus, and Tympanuchus. The data support recognition of Falcipennis canadensis franklinii and Dendragapus obscurus fuliginosus as species.  相似文献   

14.
The systematic position and intrageneric relationships of the economically important Pistacia species (Anacardiaceae) are controversial. The phylogeny of Pistacia was assessed using five data sets: sequences of nuclear ribosomal ITS, the third intron of the nuclear nitrate reductase gene (NIA-i3), and the plastid ndhF, trnL-F and trnC-trnD. Significant discordance was detected among ITS, NIA-i3, and the combined plastid DNA data sets. ITS, NIA-i3, and the combined plastid data sets were analyzed separately using Bayesian and parsimony methods. Both the ITS and the NIA-i3 data sets resolved the relationships among Pistacia species well; however, these two data sets had significant discordance. The ITS phylogeny best reflects the evolutionary relationships among Pistacia species. Lineage sorting of the NIA-i3 alleles may explain the conflicts between the NIA-i3 and the ITS data sets. The combined analysis of three plastid DNA data sets resolved Pistacia species into three major clades, within which only a few subclades were supported. Pistacia was shown to be monophyletic in all three analyses. The previous intrageneric classification was largely inconsistent with the molecular data. Some Pistacia species appear not to be genealogical species, and evidence for reticulate evolution is presented. Pistacia saportae was shown to be a hybrid with P. lentiscus (maternal) and P. terebinthus (paternal) as the parental taxa.  相似文献   

15.
Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.  相似文献   

16.
We investigated Viburnum phylogeny using separate and combined analyses of DNA sequence data from two chloroplast and three nuclear loci. Separate analyses of nuclear and chloroplast data sets resulted in gene trees that were generally congruent with one another and with trees from two previous analyses. Our gene trees do differ in the position of section Pseudotinus, as well as in species relationships within sections Pseudotinus and Lentago. However, tests for incongruence indicate that differences between the nuclear and chloroplast data are not significant. Furthermore, gene trees from combined analyses were highly similar to those found in separate analyses, suggesting that these localized differences do not affect other parts of the tree. Our analyses provide convincing support for numerous relationships, although there is still uncertainty at the base of the tree. To facilitate future study, we propose informal names for 12 well-supported species groups, as well as for several higher-level clades. We also discuss the biogeographic implications of our phylogeny, focusing on repeated, although apparently temporally incongruent, patterns of disjunction between the Old and New Worlds.  相似文献   

17.
The Aizoaceae is the largest family of leaf succulent plants, and most of its species are endemic to southern Africa. To evaluate subfamilial, generic, and tribal relationships, we produced two plastid DNA data sets for 91 species of Aizoaceae and four outgroups: rps16 intron and the trnL-F gene region (both the trnL intron and the trnL-F intergenic spacer). In addition, we generated two further plastid data sets for 56 taxa restricted to members of the Ruschioideae using the atpB-rbcL and the psbA-trnH intergenic spacers. In the combined tree of the rps16 intron and trnL-F gene region, three of the currently recognized subfamilies (Sesuvioideae, Mesembryanthemoideae, and Ruschioideae) are each strongly supported monophyletic groups. The subfamily Tetragonioideae is polyphyletic, with Tribulocarpus as sister to the Sesuvioideae and Tetragonia embedded in the Aizooideae. Our study showed that the group consisting of the Sesuvioideae, Aizooideae, and Tetragonioideae does not form a monophyletic entity. Therefore, it cannot be recognized as a separate family in order to accommodate the frequently used concept of the Mesembryanthemaceae or "Mesembryanthema," in which the subfamilies Mesembryanthemoideae and Ruschioideae are included. We also found that several genera within the Mesembryanthemoideae (Mesembryanthemum, Phyllobolus) are not monophyletic. Within the Ruschioideae, our study retrieved four major clades. However, even in the combined analysis of all four plastid gene regions, relationships within the largest of these four clades remain unresolved. The few nucleotide substitutions that exist among taxa of this clade point to a rapid and recent diversification within the arid winter rainfall area of southern Africa. We propose a revised classification for the Aizoaceae.  相似文献   

18.
Phylogenetic hypotheses for the turtle family Geoemydidae   总被引:10,自引:0,他引:10  
The turtle family Geoemydidae represents the largest, most diverse, and most poorly understood family of turtles. Little is known about this group, including intrafamilial systematics. The only complete phylogenetic hypothesis for this family positions geoemydids as paraphyletic with respect to tortoises, but this arrangement has not been accepted by many workers. We compiled a 79-taxon mitochondrial and nuclear DNA data set to reconstruct phylogenetic relationships for 65 species and subspecies representing all 23 genera of the Geoemydidae. Maximum parsimony (MP) and maximum-likelihood (ML) analyses and Bayesian analysis produced similar, well-resolved trees. Our analyses identified three main clades comprising the tortoises (Testudinidae), the old-world Geoemydidae, and the South American geoemydid genus Rhinoclemmys. Within Geoemydidae, many nodes were strongly supported, particularly based on Bayesian posterior probabilities of the combined three-gene dataset. We found that adding data for a subset of taxa improved resolution of some deeper nodes in the tree. Several strongly supported groupings within the Geoemydidae demonstrate non-monophyly of some genera and possible interspecific hybrids, and we recommend several taxonomic revisions based on available evidence.  相似文献   

19.
The phylogenetic relationships of 39 species of Eneopterinae crickets are reconstructed using four molecular markers (16S rRNA, 12S rRNA, cytochrome b, 18S rRNA) and a large morphological data set. Phylogenetic analysis via direct optimisation of DNA sequence data using parsimony as optimality criterion is done for six combinations of weighting parameter sets in a sensitivity analysis. The results are discussed in a twofold purpose: first, in term of significance of the molecular markers for phylogeny reconstruction in Ensifera, as our study represents the first molecular phylogeny performed for this insect suborder at this level of diversity; second, in term of corroboration of a previous phylogeny of Eneopterinae, built on morphological data alone. The four molecular markers all convey phylogenetic signal, although variously distributed on the tree. The monophyly of the subfamily, that of three over five tribes, and of 10 over 13 genera, are recovered. Finally, previous hypotheses on the evolution of acoustic devices and signals in the Eneopterinae clade are briefly tested, and supported, by our new data set.  相似文献   

20.
Reconstructing the evolutionary relationships of species is a major goal in biology. Despite the increasing number of completely sequenced genomes, a large number of phylogenetic projects rely on targeted sequencing and analysis of a relatively small sample of marker genes. The selection of these phylogenetic markers should ideally be based on accurate predictions of their combined, rather than individual, potential to accurately resolve the phylogeny of interest. Here we present and validate a new phylogenomics strategy to efficiently select a minimal set of stable markers able to reconstruct the underlying species phylogeny. In contrast to previous approaches, our methodology does not only rely on the ability of individual genes to reconstruct a known phylogeny, but it also explores the combined power of sets of concatenated genes to accurately infer phylogenetic relationships of species not previously analyzed. We applied our approach to two broad sets of cyanobacterial and ascomycetous fungal species, and provide two minimal sets of six and four genes, respectively, necessary to fully resolve the target phylogenies. This approach paves the way for the informed selection of phylogenetic markers in the effort of reconstructing the tree of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号